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1. Introduction

String theories are described by two-dimensional conformal field theories and are consistent

only in twenty-six (bosonic string) or ten (superstring) space-time dimensions. As it is well-

known, phenomenology imposes all of them to be compactified, except the four dimensions

observed in our universe. The compactification procedure, however, always introduces
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a certain number of new fields called moduli whose expectation values are related, for

example, to the size and the shape of the compact manifold and determine the parameters

of the four dimensional effective Lagrangian. Without fixing these expectation values,

string models are not predictive. A lot of work has been done in the last few years to

fix the value of these moduli, but we are left with the problem that there are too many

possibilities and there is the feeling among many string theorists that something important

is still missing.

In general, in order to obtain an N = 1 supersymmetric version of the Standard Model,

one needs to compactify the six extra dimensions in a Calabi-Yau six-dimensional space.

However, it is not possible, in general, to have an explicit formulation of string theory

in these backgrounds. Therefore it is not really possible to construct explicit extensions

of the Standard Model and compare their results with phenomenology. If one wants to

do that, then it is necessary to restrict oneself to orbifolds and orientifolds of toroidal

compactifications.

Starting from the observation that one wants chiral fermions, as required by the Stan-

dard Model, string theory models based on intersecting branes have been proposed and

extensively studied. In particular, type IIA orientifolds with intersecting D6 branes, to-

gether with their counterparts in type IIB theory, have provided a phenomenologically

interesting class of very explicit string compactifications [1 – 4].

In these models one only considers the simplest case in which the six-dimensional

compact manifold is the product of three two-dimensional tori T 2 × T 2 × T 2. If, for the

sake of simplicity, the analysis is limited to the torus described by the two coordinates x1

and x2 with one stack of D6 branes being placed along the x1 axis and a different one at an

angle θ (0 ≤ θ ≤ π) in the plane (x1, x2), then one gets the following boundary conditions

for an open string having one endpoint attached to the first stack of branes and the other

endpoint attached to the other stack:

∂σ

[

cos(θ)X1 − sin(θ)X2
]

σ=0
= 0 ; ∂τ

[

sin(θ)X1 + cos(θ)X2
]

σ=0
= 0 (1.1)

and Neumann and Dirichlet boundary conditions respectively in the 1, 2 directions at σ = π.

If one considers a squared torus with radii R1 and R2, then the angle θ is easily seen

to be given by:

tan θ =
mR2

nR1

where (n,m) are the wrapping numbers along the directions 1 and 2 respectively of the

second stack of branes. If one performs a T-duality transformation along the direction x2,

that amounts to exchange σ ↔ τ , the boundary conditions in eq. (1.1) are transformed

into the following ones:
[

∂σX1 − tan πν∂τX
2
]

σ=0
= 0 ;

[

∂σX2 + tan πν∂τX
1
]

σ=0
= 0

that are the boundary conditions for an open string having the endpoint at σ = 0 attached

to a brane with a constant magnetic field, given by:

tan πν ≡ 2πα′f12 =
m

n

α′

R1R2
,
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where tan πν is obtained from tan θ by the T-duality transformation: R2 → α′
R2

. In the

T-dual theory the integer n multiplies the volume of the T-dual torus, and thus it plays

the role of the wrapping number of the brane on the whole torus.1

Being the brane compactified on a torus T 2, the first Chern class for an SU(N) non-

abelian gauge field living on it must be an integer, i.e.:

∫

M
Tr

(

F

2π

)

= 2πα′F12N = m′ =⇒ 2πα′F12 =
m′

N
(1.2)

being M the brane worldvolume. It is easily seen that the wrapping number m, along the

direction x2 in which the T-duality transformation is performed, becomes the magnetic

charge m′ and the wrapping number n along the other direction x1 becomes the rank of

the gauge group N that is also equal to the wrapping number on the entire torus T 2. In

conclusion, this analysis suggests that a brane wrapped n times along the first cycle of the

torus and m times along the second cycle of the torus becomes, under a T-duality performed

along the second axis x2, a magnetized brane with magnetic flux m that is wrapped n times

along the whole torus and that is described by a non-abelian gauge theory with gauge group

U(N) with N = n.

The fact that, in order to describe branes wrapped N times on the torus T 2, one

needs a non-abelian gauge theory U(N), has been advocated by many authors [5 – 9]. In

particular, in ref. [10], it has been used for computing, among other things, the Yukawa

couplings in the field theory limit (α′ → 0) corresponding to massless open string states

attached to magnetized branes. In this approach a D-brane wrapped N times along the

torus T 2 is described by a U(N) gauge theory just like a stack of N D-branes only wrapped

once. The difference between the two systems is that in the latter case the gauge holonomy

is the identity, while it is not trivial in the former. This implies that for N branes wrapped

once the gauge theory quantities are periodic in going around the two cycles of the torus,

while for an N -tuply wound D brane one gets instead a gauge bundle whose non gauge

invariant quantities are periodic only up to a gauge transformation.

At this point a question is natural: do the previous considerations mean that a brane

wrapped N times around the torus T 2 is necessarily described by a gauge bundle of a U(N)

gauge theory? Instead of trying to answer this question directly, let us observe that, if one

uses an abelian rather than a non-abelian field, then the factor N in eq. (1.2) could be in

principle reproduced in a different way. In fact, in this case, eq. (1.2) becomes:

∫

M

(

F

2π

)

= 2πα′F12N = m′ (1.3)

where now the factor N = n is not obtained from the trace over the non-abelian group as

before, but from the fact that the brane worldvolume is N times the volume of the torus

(2π
√

α′)2, differently from the non-abelian case where the brane worldvolume coincides

1This wrapping number, which we use in the paper, is not the same thing of the geometrical embedding

since it contains less information. A geometrical embedding of a T 2 into T 2 is characterized by a matrix
 

p j

0 q

!

, up to SL(2, Z) transformations, which has wrapping n = pq.
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with the torus, as a consequence of the different periodicity conditions on the embedding

coordinates.

This second logical possibility can be realized, for instance, by a particular system of

D-branes that we call Narain branes. These are indeed obtained from a system of non-

magnetized branes by acting with the Narain T-duality group. It seems to us that this

point of view has been taken in refs. [11 – 16]. This was also the point of view taken in

refs. [17, 18], but with some differences with respect to the previous ones.

In this paper we will discuss both points of views and compare them. There is also

another reason for our analysis. In fact, while on the side of the intersecting branes a unique

and complete string description (up to non geometrical data) is available and amplitudes

involving both twisted and untwisted open strings have been computed, on the side of

magnetized branes, instead, only partial tree-level string calculations have been performed

and, as far as we can see, a complete string description of magnetized branes is still lacking.

For example, in the case of the Yukawa couplings, only a part of the amplitude has been

computed at tree-level in string theory [4, 19], while the rest has been obtained in the field

theory limit [10]. The complete expression of the Yukawa couplings has been obtained from

the corresponding computations in the intersecting branes scenario via T-duality [20 – 22]

or from the two-loop twisted partition function [23, 24].

In this paper we make the first step toward a more complete string theory formulation

of magnetized branes on the torus.

In particular, on the one hand, we show that, in order to describe wrapped branes,

we need to extend the concept of gauge bundle to string theory and in this framework

we write the equations that characterize the physical states when one goes around the

two one-cycles of the torus. We show that in this case the Chan-Paton factors, unlike the

usual ones describing the non-abelian degrees of freedom, are momentum dependent. Then

we construct the boundary state corresponding to wrapped magnetized branes described

by gauge bundles and compute the one-loop partition function. The boundary state is

constructed in two different ways. The first consists in factorizing the annulus diagram

computed in the open string channel which fixes the boundary state up to a phase factor

and the second in a direct calculation involving the non-abelian Wilson loop. We find

agreement between the two procedures up to a phase factor.

On the other hand, following the other logical possibility discussed above for describing

the wrapped branes, we start from a theory with no gauge field and we get a theory with

a non-vanishing gauge field by using the general T-duality group found by Narain. We

then apply the same technique based on T-duality for constructing a boundary state with

a gauge field on it from the usual boundary state. It turns out that the boundary states

determined in the two approaches are not identical, but give the same one-loop amplitude.

The boundary state obtained in the gauge bundle scheme contains an extra phase factor

that, however, does not contribute to the annulus diagram.

We then compute in these two theories disk amplitudes involving both open and closed

strings showing that they are different. Hence, if we only focus on the first Chern class con-

straint in order to characterize the T-dual of intersecting branes, we do not have yet enough

elements for distinguishing which of these two inequivalent descriptions is the right one.
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The paper is organized as follows. In section 2 we study open strings in an arbi-

trary toroidal background interacting with a magnetic field living on the compactified

directions. We introduce the conserved generalized translation operator and the notion of

gauge bundle.

In section 3 we discuss the gauge bundle in string theory as a description of wrapped

magnetized space-filling branes. We construct the corresponding boundary state, compute

the one-loop diagram, and give the open string vertices containing the Chan-Paton factors

that are momentum dependent. In this paper we will call non-abelian branes those based

on a non-abelian gauge bundle.

In section 4 we discuss the Narain branes. In particular, we construct their boundary

state, that turns out to be equal to that of the non-abelian branes apart from a phase factor,

and their open string vertices. We show that the two kinds of branes, even if they have

the same free-energy, are indeed different objects because they have a different boundary

state and different scattering amplitudes involving both open and closed strings.

Many of the calculations are presented in four appendices. In appendix A we summa-

rize our conventions. Appendix B is devoted to the solution of the equations of motion

of open and closed strings in closed and open string backgrounds. In appendix C we dis-

cuss the transformations of various quantities under the general Narain group of T-duality

and in appendix D we perform the path-ordering calculation of the boundary state with a

background gauge field.

2. Open strings in flux backgrounds

In this section we study the effects of turning on a background gauge field living on a

d̂-dimensional torus and interacting with closed string backgrounds. First we review the

solution of the equations of motion for open strings (the case of closed strings is discussed

in appendix B) and then we analyse how the translation generator gets modified when a

magnetic field is turned on.

2.1 Open string in open and closed string background.

Let us consider open strings on the d̂-dimensional torus, interacting with constant grav-

itational and Kalb-Ramond backgrounds and with an open string background consisting

of two abelian gauge fields with constant field strengths F
(0)
ij and F

(π)
ij acting at the two

end-points σ = 0, π of the string and, in general, independent of each other. Such a system

is described by the following action:2

S = Sbulk + Sboundary (2.1)

where Sbulk is given by:

Sbulk = − 1

4πα′

∫

dτ

∫ π

0
dσ

[

Gab∂αXa∂βXbηαβ − Babǫ
αβ∂αXa∂βXb

]

(2.2)

2With respect to the notation used in [18] we have set qπ → −qπ .
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being the world-sheet metric ηαβ = diag(−1, 1) and ǫ01 = 1, while Sboundary is:

Sboundary= −q0

∫

dτA
(0)
i ∂τX

i|σ=0 + qπ

∫

dτA
(π)
i ∂τXi|σ=π

=
q0

2

∫

dτF
(0)
ij XjẊi|σ=0 −

qπ

2

∫

dτF
(π)
ij XjẊi|σ=π ; i, j = 1, . . . , d̂ (2.3)

where q0 and qπ are the charges located at the two end-points of the open string. In

eq. (2.3) we have used the following form for the background gauge fields

Ai = −1

2
Fijx

j . (2.4)

The field Ai in eq. (2.4) is not a periodic quantity when we go around one of the two

one-cycles of the torus. However, on the torus, gauge non-invariant quantities as Ai have

only to be periodic up to a gauge transformation [25]:

Ai(x
j + 2π

√
α′δj

l ) = Ωl(x) Ai(x
j) Ω−1

l (x) − i
1

q
Ωl(x) ∂iΩ

−1
l (x) (2.5)

where q is the gauge coupling constant and Ωl(x) ≡ Ωl(x
j 6=l) is the gauge transition func-

tion. From now we mean by gauge bundle the assignment of a background field, together

with a transition function which fixes the periodicity property of the gauge field. Analo-

gously, matter fields in the adjoint representation have to satisfy the periodicity conditions

Φ(xj + 2π
√

α′δj
l ) = Ωl(x) Φ(xj) Ω−1

l (x). (2.6)

Notice that, if we perform a gauge transformation

Aω
i (x) = ω(x) Ai(x) ω−1(x) − i

q
ω(x) ∂iω

−1(x)

the transition functions transform as

Ωω
j (x) = ω(x1, . . . , xj + 2π

√
α′, . . . , xd̂) Ωj(x) ω−1(x1, . . . , xd̂). (2.7)

Furthermore, they also have to satisfy the cocycle condition, which simply means that the

gauge fields must be unchanged when translated along a closed path:

Ωj(x
k + 2π

√
α′δk

i )Ωi(x
k)Ω−1

j (xk)Ω−1
i (xk + 2π

√
α′δk

j ) = IN . (2.8)

For the choice of the gauge field given in eq. (2.4), the gauge transition functions satisfying

the identity in eq. (2.5) are

Ωi(x) = e−iπ
√

α′qFijxj

. (2.9)

With the previous choice the cocycle condition is trivially satisfied because it is equivalent

to require that the first Chern class is an integer, as we will show shortly.

The above considerations can be extended to the case of a U(1) gauge field that is

included in a U(N) gauge theory. In this case we have a non-abelian gauge bundle where
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the gauge transition functions are non-trivial unitary matrices. A possible choice for them

is [25]:

Ωj = e−iπ
√

α′qFjixi

ωj

where we have extracted the U(1) factor from the gauge transition functions. The cocycle

condition imposes the following constraints on the ω’s:

ωi ωj = e+i2πqF̂ij ωj ωi ; F̂ij ≡ 2πα′Fij . (2.10)

By taking the determinant of the previous expression it follows that the field strength must

satisfy the condition:

qF̂ij N = nij ∈ Z (2.11)

where Fij is constant and nij is an integer. Eq. (2.11) is indeed satisfied because it coincides

with the first Chern class for a non-abelian gauge field, that must be an integer. In the

case of an SU(N) gauge group, one can explicitly construct the matrices ωi in terms of the

constant ’t Hooft matrices PN and QN [25] given in appendix A:

ωi ≡ P si

N Qti
N i = 1, . . . , d̂ (2.12)

with si and ti suitable integers. Since PNQN = e2πi/NQNPN , then the cocycle condition

written in eq. (2.10) can be easily satisfied by choosing:

nij = sitj − sjti.

with nij defined in eq. (2.11). One could also add Wilson lines and this can be done in two

different ways: either by adding them as a constant in the expression of the gauge field or

in the transition functions. We will discuss these two possibilities later on.

From the action in eq. (2.1) one can derive the equations of motion in the bulk given

by:

∂α[Gij∂
αXj ] = 0 (2.13)

and the two boundary conditions at σ = 0, π:
[

Gij∂σXj + (Bij − 2πα′q0,πF
(0,π)
ij )∂τXj

]

σ=0,π
= 0. (2.14)

The solution of these equations can be easily found in the simplest case in which

q0 = qπ = q F
(0)
ij = F

(π)
ij = Fij .

and the following condition holds:

det(q0F
(0) − qπF (π))ij = 0

corresponding to the so-called dipole string. The case in which this determinant is different

from zero corresponds to the dycharged string.

– 7 –
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In the dipole case the general solution [26, 27] can be written as (see appendix B.3 for

details):

Xi(σ, τ) =
1

2

[

X̂i
L(τ + σ) + X̂i

R(τ − σ)
]

(2.15)

where the left and right moving parts are given, up to a constant, by:

X̂i
L(τ + σ) = (G−1E)ij

(

Xj
L(τ + σ)

)

(2.16)

and

X̂i
R(τ − σ) = (G−1ET )ij

(

Xj
R(τ − σ)

)

(2.17)

with E defined by:

E = ‖ Eij ‖= ET + 2πα′q0F ≡ G − B (2.18)

being

E = ‖ Eij ‖= G + B

and

Xi
L(τ + σ) = xi + 2α′Gijpj(τ + σ) + i

√
2α′

∑

n 6=0

αi
n

n
e−in(τ+σ)

Xi
R(τ − σ) = xi + 2α′Gijpj(τ − σ) + i

√
2α′

∑

n 6=0

αi
n

n
e−in(τ−σ)

where Gij is the open string metric:

G ≡ ET G−1E

and Gij is its inverse. The quantization of the theory requires the following commutation

relations [26 – 28]:

[xi, xj ] = i 2πα′Θij [xi, pj ] = iGij [αi
m, αj

n] = Gijmδn+m,0

where Θ is defined by the relation:

(E−1)ij = Gij − Θij. (2.19)

The operator L0 is given by the Hamiltonian in eq. (B.7) and a straightforward calculation

gives:

L0 = α′piGijpj +
∞

∑

n=1

Gijα
i
−nαj

n. (2.20)
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2.2 Translation generator in the presence of a magnetic field.

In our compactified string theory, described by the bulk and boundary actions respectively

given in eqs. (2.2) and (2.3), the conjugate momentum density given by:

Pi =
1

2πα′

[

GijẊ
j + BijX

′j
]

+
1

2
q0F

(0)
ij Xj(0) δ(σ) − 1

2
qπF

(π)
ij Xj(π) δ(π − σ)

is not gauge invariant, because of the gauge choice made in eq. (2.4) and is not a conserved

charge as in the case with F = 0. This is not surprising because the string action, in the

presence of a magnetic field, is not invariant under translations. However, one can easily

see that the string action is indeed invariant under a suitable combination of a translation

and a gauge transformation [29] . In particular, with the gauge chosen in eq. (2.4), the

action is invariant under the combination of a translation Xi → Xi + ǫi (under which the

gauge field transforms as Ai → Ai + ∂jAiǫ
j) and a gauge transformation Ai → Ai − ∂iφ

with φ = 1
2FijX

jǫi. We will refer to this transformation as a generalized translation. The

Nöther current associated to such an invariance is given by:

Jα
i (τ, σ) = − 1

2πα′ [Gij∂
αXj − Bijǫ

αβ∂βXj ]

which is conserved as a consequence of the equations of motion.

The conservation of the previous current implies [30]:

0 =

∫ π

0
dσ∂αJα

i

=

∫ π

0
dσ ∂τJ

0
i (σ) +

[

J1
i (σ)|σ=π − J1

i (σ)|σ=0

]

= ∂τ

[∫ π

0
dσ

1

2πα′ [GijẊ
j + BijX

j ′] + q0F
(0)
ij Xj |σ=0 − qπF

(π)
ij Xj |σ=π

]

where we have used the open string boundary conditions given in eqs. (2.14). It follows

that the generator of such a transformation is a constant of the motion that is simply given

by [29, 30]:

T̂i =

∫ π

0
dσ

{

1

2πα′ [Gij Ẋj + Bij Xj ′] + q0F
(0)
ij Xjδ(σ) − qπF

(π)
ij Xjδ(σ − π)

}

= (q0F
(0) − qπF (π))ijx

j + δq0F (0)−qπF (π);0 Gijp
j. (2.21)

It differs from the conjugate momentum for the one half factor in front of the terms de-

pending on the gauge field. Moreover it satisfies the following commutation relation [30]:
[

T̂i, T̂j

]

= i
(

q0F
(0) − qπF (π)

)

ij
. (2.22)

It is interesting to observe that, when the dipole condition is satisfied, the same expres-

sion for the translation operator could be obtained by considering a slight modification of

eq. (2.3):

Ŝboundary = −q

∫

dτ

∫ π

0
dσ FijX

′jẊi

– 9 –
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= −q

∫

dτ

∫ π

0
dσ

[

∂σ

(

1

2
FijX

jẊi

)

− ∂τ

(

1

2
qFijX

jX
′i
)]

. (2.23)

This expression is equivalent to eq. (2.3) up to a total derivative with respect to τ and

is gauge invariant. The conjugate momentum computed from the bulk action in eq. (2.2)

with the addition of the boundary term in eq. (2.23) turns out to be:

P̂i =
1

2πα′

[

GijẊ
j + BijX

′j
]

− qFijX
′j

=
1

2πα′

[

GijẊ
j + (Bij − qF̂ij)X

′j
]

=
1

2πα′
[

(ET )ij∂+Xj + (E)ij∂−Xj
]

. (2.24)

When integrated in dσ, it yields precisely eq. (2.21) for the dipole case.

On a torus the system must be invariant under a generalized discrete translation, i.e.

xi → xi +2π
√

α′. This means that the physical states are those which satisfy the following

identity:

Ti|phys〉 ≡ ei2π
√

α′T̂i |phys〉 = |phys〉. (2.25)

In particular, when the dipole condition is satisfied, the translation operator becomes

identical to the momentum operator in eq. (2.24) (as it follows from eq. (2.21)) whose

spectrum is determined by imposing the previous constraint. In this way one gets:

pi|k〉 = ki|k〉 =
ni√
α′ |k〉

where ki is the eigenvalue of the operator pi. Taking into account these eigenvalues one

can rewrite the operator L0 in eq. (2.20) as follows:

L0 = niGijnj +

∞
∑

n=1

Gijα
i
−nαj

n. (2.26)

The previous analysis is valid when we have just D-branes wrapped once on the torus and

having a U(1) background gauge field turned-on on their worldvolume. In the next section

we will generalize the previous construction to the case of D-branes wrapped N times.

3. Non-abelian branes

In this section we provide a description of D-branes wrapped N times along the two-cycles

of the torus T 2. We start discussing in section 3.1 the case with vanishing gauge field that

has been already discussed in the literature and then we analyze in section 3.2 the case

with F 6= 0. We show that, in this description, D-branes wrapped N times along the torus

T 2 have Chan-Paton factors that are momentum dependent. Then in section 3.3 we discuss

the non-degenerate case and in section 3.4 the degenerate one. section 3.5 is devoted to

the construction of the boundary state and to the one-loop annulus diagram. Finally the

open tachyon vertex is constructed in section 3.6.
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3.1 Non-abelian gauge bundle: F = 0

Let us start discussing the case with F = 0, but with A having a non trivial background

value or, equivalently, when a Wilson line background is turned on. This is the case

considered in ref. [8] where the perturbative dynamics of open strings attached to multiply

wound D-branes is analyzed. A very important point made in ref. [8] is that a D-brane

wrapped N times around a torus can be described as a brane with gauge group U(N)

and with a non trivial holonomy group H 6= I. Actually, as stressed in ref. [31], the

existence of a non-trivial holonomy is what makes the difference between a bound state

of N D-branes each wrapped once around the torus (such a state has gauge group U(N)

but trivial holonomy H = I) and a single N-tuply wound D-brane. On the other hand, a

non-trivial gauge holonomy H arises when a Wilson line background is turned on, being

H = P [e+iq
H

A] and P stands for the path ordering. Thus Wilson lines provide a natural

way to describe multiply wound D-branes. However, as discussed in ref. [8], a Wilson line

background implies non standard kinetic terms for the fields. Therefore it is useful to make

a field redefinition which actually exchanges the Wilson line background with non-trivial

boundary conditions. More explicitly, let us consider the following U(N) Wilson lines

background:

Ai = Θi =







a1
i . . . 0

0
. . .

0 . . . aN
i






.

It implies the existence of a non-trivial holonomy group:

H = P [eiq
H

A] = eiq2πΘi

√
α′

. (3.1)

Being the gauge field background Ai constant, the periodicity condition in eq. (2.5) is

simply satisfied by the gauge transition function Ωl = IN , which means that both the

gauge and the matter fields have trivial boundary conditions:

Ai(x
j + 2π

√
α′δj

l ) = Ai(x
j) Φ(xj + 2π

√
α′δj

l ) = Φ(xj). (3.2)

However, the non-zero value of the background field A generates non-standard kinetic

terms. It is therefore useful to perform a gauge transformation with the gauge function

ω(x1, . . . , xd̂) = eiqΘixi
so, according to eq. (2.7), one gets:

Aω
i = 0 Ωω

i = eiq2πΘi

√
α′

(3.3)

corresponding to a new description in which the Wilson line background is zero, but the

gauge and matter fields satisfy the non-trivial boundary conditions given in eqs. (2.5), (2.6)

with Ω given in (3.3). Notice that the transition function in eq. (3.3) coincides with the

holonomy matrix in eq. (3.1).

3.2 Non-abelian gauge bundle in string theory: F 6= 0

In this subsection we discuss the case F 6= 0 and extend the notion of gauge bundle,

discussed in section 2.1, to the string level in the non-abelian case. The main difference
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which occurs in the F 6= 0 case is that, by choosing for example the gauge field as in

eq. (2.4), the gauge transition functions are forced to be non trivial, because Ai itself is

not single valued under xi → xi + 2π
√

α′. In other words with F 6= 0 one is forced to have

non trivial holonomy.

Let us first go back to the abelian case describing a D brane only wrapped once on the

torus T 2. The basic ingredient is the identification of the physical states under combined

translations and gauge transformations as expressed in eq. (2.25). In addition we have also

to impose the consistency condition which requires the string states to be left invariant

when translated along a closed path. This means that:

T (i)

2π
√

α′T
(j)

2π
√

α′ |phys.〉 = T (j)

2π
√

α′T
(i)

2π
√

α′ |phys.〉 (3.4)

or equivalently:
[

T (i)

2π
√

α′ , T
(j)

2π
√

α′

]

= 0. (3.5)

Eq. (3.5) can be considered as the extension to the string level of the cocycle condition given

in eq. (2.8). In the abelian case the constraint in eq. (3.5) is always verified. In particular,

when the dipole condition holds, it is satisfied because the translation generators commute,

as it follows from eq. (2.22). In the dycharged string case, the right hand side of eq. (2.22)

is not vanishing anymore and eq. (3.5) imposes the following constraint:

(2π
√

α′)2(q0F
(0) − qπF (π))ij = 2π(n

(0)
ij − n

(π)
ij ) nij ∈ Z (3.6)

which is indeed satisfied because this is nothing but the definition of the first Chern class for

a constant field strength. This is another evidence that T is the right translation operator.

The previous analysis is valid in the abelian case in which we have just two branes

wrapped once on the torus with two different U(1) background gauge fields turned-on on

their worldvolume. But if we want to describe two stacks of D-branes wrapped respectively

N0 and Nπ times on the torus, we need to extend the previous considerations to a non-

abelian case where the string states are dressed with Chan-Paton factors. The gauge group

is U(N0) × U(Nπ). In this case the generator of generalized translations acts also on the

Chan-Paton factors. We denote by ω
(0,π)
i the matrices acting on them. Physical states

must then satisfy the identification

e2π
√

α′ iT̂i(ω
(0)†
i )ℓh(ω

(π)
i )tm|Φ, h t〉 ≡ |Φ, ℓm〉, (3.7)

where the background gauge field has been taken in the U(1) part of the gauge group.

Moreover the following cocycle condition has to be satisfied:

e(2π
√

α′)iT̂je(2π
√

α′)iT̂i(ω
(0)
i ω

(0)
j )†ℓh(ω

(π)
i ω

(π)
j )tm|Φ, h t〉

= e(2π
√

α′)iT̂ie(2π
√

α′)iT̂j (ω
(0)
j ω

(0)
i )†ℓh(ω

(π)
j ω

(π)
i )tm|Φ, h t〉. (3.8)

This equation is satisfied if we impose the relations:

ω
(0)
i ω

(0)
j = e

+2πi
n
(0)
ij

N0 ω
(0)
j ω

(0)
i ; ω

(π)
i ω

(π)
j = e+2πi

n
(π)
ij

Nπ ω
(π)
j ω

(π)
i . (3.9)
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Eq. (3.9) is the string realization of the constraint given in eq. (2.10) and again it can be

satisfied by taking for the ω’s the matrices in eq. (2.12).

Eq. (3.7) can also be written in the following suggestive form:

e2π
√

α′ iT̂i [(ω
(0)
i )†Λ(ω

(π)
i )]ℓm lim

z→0
V (z)|0〉 ≡ Λℓm lim

z→0
V (z)|0〉

where V (z) is the vertex operator which creates the corresponding physical state by acting

on the conformal vacuum and the matrix Λ is the Chan-Paton factor. In the dipole case

where q0F
(0) = qπF (π) implies [T̂i, T̂j ] = 0 so that we can assume that the generators of

generalized translation annihilate the vacuum, i.e. T̂i|0〉 = 0, the previous equation implies

the important relation:

e2π
√

α′ iT̂iω
(0)
i ΛV (z)(e2π

√
α′ iT̂iω

(π)
i )† ≡ ΛV (z) (3.10)

which must be satisfied by the open string vertex V (z).

In the last part of this section we will analyze more explicitly the case of a constant

background gauge field satisfying the dipole condition and living in the identity part of the

U(N) gauge group. It follows that the first Chern class is given by:
∫

Tr

(

q F12IN

2π

)

= 2πα′q F12N = n12 ≡ f ∈ Z (3.11)

where we have used the fact that
∫

d2x = (2π
√

α′)2. In this set-up the cocycle condition

given in eq. (3.9) can be easily satisfied by taking:

ω1 = QN ω2 = P−f
N . (3.12)

In general, the Chan-Paton factor Λ depends on the choice of transition functions. With

the previous choice, eq. (3.7) gives the following constraints:

e2π
√

α′ ip1 Q†
N Λk QN |Φ, k〉 ≡ Λk|Φ, k〉

e2π
√

α′ ip2 P f
N Λk P−f

N |Φ, k〉 ≡ Λk|Φ, k〉 (3.13)

where we have denoted by k the momentum of the physical state and, as it will be clear

later, we have also assumed a dependence of the Chan-Paton factors on the momentum k.

It is useful to expand the Chan-Paton factors in terms of the complete set of ’t Hooft

matrices:

(Λk)lm =
N−1
∑

h1, h2=0

C(k, hi)

(

Qh2
N P h1

N

)

lm
. (3.14)

We will see in the next subsections that eqs. (3.13) fix the structure of the Chan-Paton

factors up to a c-number. When discussing the string vertices, we will explicitly show that

a phase factor is indeed necessary to ensure the correct hermitian conjugation property of

the string vertex.

In the following we are going to treat separately the degenerate case and the non-

degenerate one, where the great common divisor (GCD) between the first Chern class and

the rank of the gauge group is greater or equal to one, respectively.
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3.3 The non-degenerate case: GCD(f,N) = 1

In this case, by translating of 2π
√

α′ the string states N times along the i-th direction of

the torus, eqs. (3.13) reduce to the identity:

e2π
√

α′ i N pi Λk |Φ, k〉 ≡ Λk|Φ, k〉
where we have used PN

N = QN
N = 1, giving the following quantization of the momenta:

ki =
ni√
α′ N

ni ∈ Z and i = 1, 2. (3.15)

Eq. (3.15), when used in the first of eqs. (3.13), yields the following constraint on the

Chan-Paton factors in eq. (3.14):

e2iπn1/NQNΛ(n1, n2)Q
−1
N = e2iπn1/N

N−1
∑

h1, h2=0

e2iπh1/NC(n1, n2, h1, h2)Q
h2
N P h1

N

≡
N−1
∑

h1, h2=0

C(n1, n2, h1, h2)Q
h2
N P h1

N (3.16)

after having used eq. (A.1) h1 times in the first equality. Eq. (3.16) implies

C(n1,n2,h1,h2) = δ
[N ]
−n1,h1

C(n1,n2).

By using instead eq. (3.13) along the direction x2 one gets:

e2iπn2/NP f
NΛ(n1,n2)P

−f
N = e2iπn2/N

N−1
∑

h1, h2=0

e2iπ f h2/NC(n1,n2,h1, h2)Q
h2
N P h1

N

≡
N−1
∑

h1, h2=0

C(n1,n2,h1, h2)Q
h2
N P h1

N (3.17)

which implies that all the quantities C(ni,hi) vanish unless

fh2 ≡ −n2 mod N. (3.18)

But, since QN
N = 1, h2 is actually defined modulo N . Hence we can solve eq. (3.18) as

h2 = ĥ2n2

where we have defined the constant ĥ2 as

fĥ2 ≡ −1 mod N 0 ≤ ĥ2 < N (3.19)

in such a way that for any n2 there is only one value of h2 (modulo N). In conclusion, the

periodicity in x1 and x2 implies for C the following form:

C(n1,n2,h1,h2) = δ
[N ]
h1,−n1

δ
[N ]

h2,ĥ2n2
C(n1,n2) (3.20)

Furthermore, eq. (3.20) implies that, for any value of n1 and n2, we have just one value of

h1 and one of ĥ2 modulo N that allow to satisfy the periodicity in the two directions x1 and

x2. This means that, for each value of the two integers (n1, n2) we have a definite value for

the integers (h1, h2) modulo N and this selects therefore a unique matrix (Qh2
N P h1

N )ab in the

expansion in eq. (3.14). Thus the Chan Paton factors explicitly depend on the momentum.
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3.4 The degenerate case: g = GCD(f,N) > 1

In this case we have that the periodicity conditions ωN
i = 1 are modified as follows:

(ω1)
N = (ω2)

N
g = 1

and therefore the momenta become:

k1 =
n1√
α′N

k2 =
n2g√
α′N

.

By repeating the same procedure as in the non-degenerate case, we have that the condition

written in eq. (3.16) is unchanged, while eq. (3.17) is modified as follows:

e2iπn2g/N P f
NΛ(n1,n2)P

−f
W = e2iπn2g/N

N−1
∑

h1,h2=0

C(n1,n2,h1,h2)e
2iπfh2/NQh2

N P h1
N

≡
N−1
∑

h1,h2=0

C(n1,n2,h1,h2,hi)Q
h2
N P h1

N .

The following condition is implied:

f

g
h2 ≡ −n2 mod

N

g
. (3.21)

The solution of this equation can be found by writing again:

h2 = ĥ2 n2 with 0 ≤ ĥ2 < N/g (3.22)

and solving the following condition which is independent on n2:

f

g
ĥ2 ≡ −1 mod

N

g
.

Finally, we can write:

Λ(n1,n2) ≡ C(n1, n2,n1,ĥ2 n2)
Q

ĥ2 n2+mN
g

N P−n1
N (3.23)

with m ∈ Z. However, eq. (3.23) immediately shows that we are losing some solutions. This

is because, due to the periodicity of the matrix QN which is N and not N/g, in varying m

in the interval 0 ≤ m < g we have inequivalent solutions associated to the same momentum

n2/
√

α′N . This is an extra degeneracy, not present in the non-degenerate case, which leads

us to write, instead of eqs. (3.22) and (3.23), the following most general solutions:

h2 = ĥ2n2 + A
N

g
0 ≤ A < g

and

C(n1,n̂2,h1,h2) = δ
[N ]
h1,−n1

δ
[N ]

h2,ĥ2
n2
g

+AN/g
C(n1, n2, A) ; 0 ≤ A < g.
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Hence, given n1, we have only one value of h1 = n1 contributing in the expansion in

eq. (3.14), while, given n2, we have g possible values of h2. This means that each value of

momentum has a degeneracy g.

In the last part of this section we make some comments on the generalization of the

previous bundle construction to the case of magnetized branes living on a product of

T 2 × T 2 · · · × T 2 of d̂
2 tori. The gauge bundle is again U(N), but now it is broken into

the product
∏d̂/2

l=1 U(Nl) by the presence, in each factorized torus, of a background gauge

field with constant field strength F
(l)
12 , with l = 1, . . . , d̂/2. The cocycle conditions, given

in eq. (3.9), can indeed be satisfied by embedding, as in the T 2 case, the background

gauge fields in the abelian parts of the gauge transition functions and choosing for the non-

abelian part the product of d̂/2 constant matrices, all equal to the ones given in eq. (3.12).

This choice of gauge bundle allows us to trivially generalize the previous analysis to the

product of T 2 × T 2 . . . T 2 by simply adopting in each T 2 the procedure developed before.

An interesting open question is to understand how general this choice is. It seems indeed

to be consistent when the second Chern numbers are integers [25]. However it would be

nice to find general rules in constructing consistent gauge bundles associated to branes

compactified on a generic torus T d̂. We leave this analysis to further developments.

3.5 Boundary state of a non-abelian brane

In this subsection we derive the boundary state of a space-filling D25 brane of the bosonic

string theory, whose worldvolume spatial dimensions are partially or totally compactified

on a torus T d̂. The part of the boundary state containing the non-zero modes is the same

as in the uncompactified case. Therefore we need only to determine the part with the

zero modes.3 Our results can also be easily extended to the case of the D9 brane of a

superstring, because the zero mode structure is the same in the two cases.

The starting point is the computation of the annulus diagram in the open string channel

and this will allow us to make contact with previous results [17, 32, 18]. In this calculation

the role played by the bundle at string level, developed in the previous subsections, will

be very important. Then, by using open/closed string duality, we rewrite it in the closed

channel and from it we derive the boundary state. Subsequently, the same boundary

will be determined directly in the closed string channel along the lines of ref. [33]. The

two approaches provide the same boundary state up to a phase that, however, does not

contribute to the annulus diagram.

In order to use all the machinery developed in the previous sections we restrict ourselves

to the background R
1,25−d̂ × (T 2)d̂/2 (d̂ even). This simplification, however, will not be

necessary for determining the boundary state directly from the closed string channel. On

each of the tori we turn on a background gauge field with constant field strength given by:

Fl ≡
(

0 F l
12

−F l
12 0

)

INl
.

3In the final writing of this paper we were informed by D. Duo, R. Russo and S. Sciuto that they have

obtained a similar expression for the boundary state [24].
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Let us start by computing the annulus diagram in the open string channel in the case

in which the open strings are attached to two space-filling branes having the same gauge

field on their worldvolume and therefore satisfying the dipole condition. This amounts to

evaluate:

Zdipole
25; F = M2

∫ ∞

0

dτ

τ
Tr

[

e−2πτL0
]

(3.24)

where, in order to be more general, we have considered M space-filling branes producing

the factor M2 in the previous equation. These are degrees of freedom associated to an

additional U(M) gauge group under which the background gauge fields are uncharged. L0

is the open string Hamiltonian given in eq. (2.26). After some calculation, eq. (3.24) in the

non-degenerate case becomes:

Zdipole
25; F =

M2V26−d̂

(8π2α′)(26−d̂)/2

∫ ∞

0

dτ

τ
τ− 26−d̂

2

[

f1(e
−πτ )

]−24

×
d̂/2
∏

l=1







∑

n(l)∈Z

e
−2πτ

P2
p,q=1

"

n
(l)
p

Nl
(G(l))pq n

(l)
q

Ni

#





. (3.25)

This equation can be rewritten in the closed string channel by using the following Poisson

resummation formula:

∑

w∈Zp

exp [−π(w + x)A(w + x)] = (det A)−1/2
∑

w∈Zp

exp
[

−π wA−1w + 2πiw x
]

and the transformation properties of the function f1(e
−πτ ) =

√
tf1(e

−πt) under τ → t = 1
τ ,

obtaining:

Zdipole
25; F =

M2V26−d̂

(8π2α′)(26−d̂)/2

d̂/2
∏

l=1





(

det
G(l)

pq

2

)1/2

N2
l





×
∫ ∞

0
dt

[

f1(e
−πt)

]−24
d̂/2
∏

l=1





∑

s(l)∈Z

e
−π

2
tsp

(l)
NlG(l)

pq sq

(l)
Nl



 . (3.26)

Eq. (3.26) gives the interaction between two stacks of M D25 magnetized branes in the

closed channel. By using the equation:

Zdipole
25; F = 〈D25(E, F )|∆|D25(E, F )〉

where ∆ is the closed string propagator, we can determine the boundary state apart from

an overall phase.

In this way we get the following expression of the boundary state, which we now write

both for the D25 brane of the bosonic theory and for the D9 brane of the superstring:

|D(d − 1)(E, F )〉 =

√
det E

(detG)1/4
M

Td−1

2
e−

P∞
n=1

1
n

αµ
−nGµν α̃ν

−n (3.27)
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×e−
P∞

n=1
1
n

αi
−nEik(E−T )khGhj α̃j

−n |k = 0; 0a, 0ã〉
d̂/2
∏

l=1

|D(d−1)(E, F )lNl
〉z.m..

Here, d = 26 or 10, Td−1 is the tension of the space-filling brane given just before eq. (B.28),

µ, ν are the non-compact space-time indices and

|D(d − 1)(E, F )lNl
〉z.m. = Nl

∑

n(l),m(l)∈Z

δ
n̂

(l)
p −2πα′qF l

pqm̂
(l)
q
|n(l)

p ,m(l)
q 〉 (3.28)

where E is given in eq. (2.18). Notice that the particular structure of the delta function

is the one that is also required by the overlap conditions in eq. (B.24). Finally, in order

to reproduce the peculiar structure of the exponent in eq. (3.26) and also to implement

that the first Chern-class is integer as dictated by eq. (3.11), we have to impose that

mq
(l) = Nls

q
(l) with sq

(l) ∈ Z and we end with the following boundary state:

|D(d − 1)(E, F )lNl
〉z.m. = Nl

∑

s(l)∈Z

|2πα′Nl qF
l
pq sq

(l), Nl s
q
(l)〉 (3.29)

Before discussing the degenerate case let us compare the boundary state in eq. (3.29) with

the one we have exhibited in eq. (17) of ref. [18]. They only differ from the fact that

the zero modes in eqs. (3.28) and (3.29) have integer Kaluza-Klein momenta and winding

numbers, while the ones in eq. (17) of ref. [18] have integer winding modes but fractional

Kaluza-Klein modes. We think, however, that it is unnatural to have fractional Kaluza-

Klein momenta in the closed string sector and therefore we prefer the boundary state given

here which eliminates this feature.

The previous equations can be easily generalized to the degenerate case. Eq. (3.25)

now becomes

Zdipole
25; F =

M2V26−d̂

(8π2α′)(26−d̂)/2





d̂/2
∏

l=1

g(l)





∫ ∞

0

dτ

τ
τ− 26−d̂

2
[

f1(e
−πτ )

]−24

×
d̂/2
∏

i=l







∑

n(l)∈Z

e
−2πτ

P2
p,q=1

"

n
(l)
p (δ

p
1
+g(l) δ

p
2
)

Nl
(G(l))pq n

(l)
q (δ

q
1
+g(l) δ

q
2
)

Ni

#





(3.30)

where the overall factor
[

∏d̂/2
l=1 g(l)

]

and the peculiar structure of the momenta are due

respectively to the degeneracy and the structure of the dipole string momentum in the

degenerate case.

By rewriting it in the closed string channel we get:

Zdipole
25; F =

M2V26−d̂

(8π2α′)(26−d̂)/2

d̂/2
∏

l=1





(

det
G(l)

pq

2

)1/2

N2
l





∫ ∞

0
dt

[

f1(e
−πt)

]−24

×
d̂/2
∏

l=1





∑

s(l)∈Z

e
−π

2
tsp

(l)
Nl

„

δp
1+

δ
p
2

g(l)

«

G(l)
pq

„

δq
1+

δ
q
2

g(l)

«

sq

(l)
Nl



 . (3.31)
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The zero-mode structure of the boundary state that is extracted from the previous equation

has again the form given in eqs. (3.28) and (3.29), but now one can impose a weaker

condition:

(2πα′)
Nl

g(l)
qF l

12 =
f l

g(l)
∈ Z

which requires that mq
(l) = Nl/g

(l) sq
(l). However, in order to reproduce from the boundary

state the expression in eq. (3.31) for the degenerate case, we need to take mq
(l) = Nl s

q
(l) (δ1

q +

δ2
q/g(l)). By collecting all the results we can write:

|D25(E, F )lNl
〉z.m. = Nl

∑

s(l)∈Z

|2πα′Nl qF
l
pq sq

(l) (δ1
q + δ2

q/g
(l)), Nl s(l) (δ1

q + δ2
q/g(l))〉 (3.32)

The generalization of the previous expression to the D9 brane is straightforward. It is easy

to verify that the boundary state in eq. (3.32) reproduces the zero-mode contribution in

eq. (3.31). Notice that the asymmetry between directions 1 and 2 is a direct consequence

of the asymmetric choice for the transition function performed in eq. (3.12).

In the following we would like to explore the connection between the magnetized D25

branes carrying non-trivial gauge bundles and the T-dual systems corresponding to lower

dimensional branes generically wrapping some cycles of the torus. The T-duality which we

consider is the one that exchanges the Kähler structures T
(l)
i with the complex structures

U
(l)
i of the torus T 2 defined as follows:

T (l) ≡ T
(l)
1 + iT

(l)
2 = B

(l)
12 + i

√

G(l) ; U (l) ≡ U
(l)
1 + iU

(l)
2 =

G
(l)
12

G
(l)
11

+ i

√
G(l)

G
(l)
11

.

The exponential factor in eq. (3.30), which is essentially due to the zero modes of the open

string Hamiltonian4 on the torus T 2, can be written as:

(

n
(l)
p δp

1 + n
(l)
p g(l)δp

2

Nl

)

(G(l))pq

(

n
(l)
q δq

1 + n
(l)
q g(l)δq

2

Nl

)

=
T

(l)
2

U
(l)
2

|n(l)
2 − n

(l)
1

U (l)

g(l) |2

| Nl

g(l) T − f l

g(l) |2
(3.33)

where we have used the open string metric on the torus T 2:

(G(l))pq =
T

(l)
2

U
(l)
2 (T

(l)
2

2
+ B(l)2)

(

|U (l)|2 −U
(l)
1

−U
(l)
1 1

)

; B = B12 − 2πα′qF12.

Under the T-duality transformation, i.e. T ↔ U , the l.h.s. of eq. (3.33) becomes:

T
(l)
2

U
(l)
2

|n(l)
2 − n

(l)
1

U (l)

g(l) |2

| Nl

g(l) T − f l

g(l) |2
=⇒ U

(l)
2

T
(l)
2

|n(l)
2 − (w

(l)
1 +

v
(l)
1

g(l) )T
(l)|2

| Nl

g(l) U − f l

g(l) |2
(3.34)

where we have rewritten n
(l)
1 /g(l) as w

(l)
1 +v

(l)
1 /g(l) with w

(l)
1 ∈ Z and v

(l)
1 = 0, . . . , gl−1. The

T-dual zero mode Hamiltonian in the non-degenerate case can be interpreted as the one

4In the non-degenerate case and in the case of a squared torus this Hamiltonian appears in refs. [11 – 13]
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of a lower dimensional brane wrapping respectively (±Nl, ∓f l) times the two one-cycles

of the torus as we have discussed in the introduction. This can be seen by comparing the

zero-mode Hamiltonian in the r.h.s. of eq. (3.34) for the squared torus T 2 with B12 = 0

(T = iR1R2
α′ ;U = iR2

R1
), with the zero-mode Hamiltonian given for instance in section (3.1)

of ref. [34].

In the degenerate case we see instead that, for v
(l)
1 = 0, the open string Hamiltonian

coincides with the one of a lower-dimensional brane with wrappings nl = ±Nl/g
(l), ml =

∓f l/g(l) along the one-cycles of the torus. For v
(l)
1 6= 0, eq. (3.34) shows that also for zero

winding wl
1 = 0 the open string has a minimal length and therefore the previous Hamilto-

nian describes the interaction between parallel branes displaced in the space transverse to

their worldvolume.5 In this case, the zero-mode contribution to the D-brane interaction,

in the T-dual configuration, can be written as:

Zz.m. =

d̂/2
∏

l=1









g(l)
∑

(k(l), w(l))∈Z

g(l)−1
∑

v(l)=0

e
−2πτ

U
(l)
2

T
(l)
2

|k(l)−(w(l)+ v(l)

g(l)
)T (l)|2

|nl U+ml|2









.

where the sum over v(l) suggests that the brane is not stable and decays into a stack of

g(l) branes wrapped ml ≡ ∓f l/g(l) and nl ≡ ±Nl/g
(l) times along the cycles of the tori

(T 2)(l).6

In the last part of this subsection we derive the boundary state with a gauge field on it

directly in the closed string channel starting from the boundary state without a gauge field

and following the procedure described in ref. [33] that provides the following expression:

|D25(E,F )〉 = Tr
(

P e+i
H

qA
)

|D25(E,F = 0)〉

where the boundary state without the gauge field is given in eqs. (B.28) and (B.29). The

previous path ordering is explicitly evaluated in appendix D getting

|D25(E,F )〉 =
T25

2
N

√
det E

(det G)1/4

∑

s

e−iπF̂ <
ij sisj |ni = F̂ijNsj,mi = si〉 (3.35)

×e−
P∞

n=1
1
n

αi
−nEik(E−T )khGhj α̃j

−n |0a, 0ã〉e−
P∞

n=1
1
n

αµ
−nGµν α̃ν

−n |k = 0〉.

Here F̂<
ij = F̂ ij when i < j and zero otherwise. The boundary state in eq. (3.35) differs

from the one given in eq. (3.29) for a phase factor. However, this extra phase does not give

any contribution to the one-loop free-energy and this is the reason why in the previous

determination of the boundary it has not been possible to reveal its presence.

3.6 The string vertices

In this section we construct the vertex operators corresponding to the open strings having

their endpoints on the D25 branes. We limit our analysis to the compactified part of the

5See for instance section (3.2) of ref. [34].
6See the discussion on page 84 of ref. [4].
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vertex and also to the lowest state, the tachyonic one, being the generalization to higher

state vertices straightforward.

In the non-degenerate case and on the simplest case of T 2, the compact part of the

string vertex, describing an open-string tachyon living on a non-abelian brane is given by:

V (x; k) = eikiXi(x)Λ(k1,k2)

where Xi(x) is given in eq. (2.15) with σ = 0 and x = e−iτ , Λ is the Chan-Paton factor

and the momentum is given by

(k1, k2) =
1√
α′

(

n1

N
,
n2

N

)

.

Using eq. (B.47) it is easy to rewrite the previous equation as follows:

V (x; k) = e
ikiXi

L(0)
(x)

Λ(k1,k2) (3.36)

where we have neglected cocycle factors, an example of which is provided for instance by

the last term in eq. (B.43). The generalization of such a vertex to the case of (T 2)
ˆd/2 is

simply the factorized product of d̂
2 operators, one for each torus T 2, with the same structure

as the one given in eq. (3.36).

In sections (3.3) and (3.4) we have determined the structure of the Chan-Paton factors,

respectively in the non-degenerate and degenerate case, up to a c-number factor. In par-

ticular, for the non-degenerate case, the Chan-Paton factor is given in eq. (3.14) together

with eq. (3.20). Since now the Chan-Paton factor depends on the momentum, we must also

remember that the vertex operator in eq. (3.36) has to satisfy the hermitian conjugation

property

V (z; k)† =
1

z2h
V (1/z;−k)

with h being the conformal weight, which imposes the following constraint on the Chan-

Paton factor:

Λ†
(k1,k2)

= Λ(−k1,−k2). (3.37)

In order to satisfy the previous identity we must add a phase factor to the Chan-Paton

factor determined above and we get:

Λ(k1,k2) =
1√
N

e−iπN α′ ĥ2k1k2

(

QN
√

α′ ĥ2k2
N P−N

√
α′k1

N

)

(3.38)

where ĥ2 is defined in eq. (3.19). The fact that Λ in eq. (3.38) satisfies eq. (3.37) is a

consequence of the relations: P † = P−1 and Q† = Q−1.

It is easy to check that the Λ(k1, k2) matrix satisfies the multiplication rule

Λ(k1,k2)acΛ(l1,l2)cb =
1√
N

eik∧l Λ(k1+l1,k2+k2)ab
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where we have introduced the product

k ∧ l = −πα′ Nĥ2(k1l2 − k2l1)

or more in general:

M
∏

i=1

Λ
(k

(i)
1 ,k

(i)
2 )

= N
1−M

2

M
∏

i<j=1

eik(i)∧k(j)
Λ

(
PM

i=1 k
(i)
1 ,

PM
i=1 k

(i)
2 )

.

In order to compare with an alternative description of wrapped branes that we will present

in section 4, it is useful to evaluate explicitly the trace over the Chan Paton factors, that

is given by:

Tr

[

M
∏

i=1

Λ
(k

(i)
1 ,k

(i)
2 )

]

= N−M
2

M
∏

i<j=1

eik(i)∧k(j)

×δ
[N ]

N
√

α′ PM
i=1 k

(i)
1 ;0

δ
[N ]

N
√

α′ PM
i=1 k

(i)
2 ;0

(3.39)

The normalization coefficient 1√
N

introduced in eq. (3.38) is there to ensure that the trace

over two Chan-Paton factors is independent on the number of colors.

The analysis done so far to determine the structure of the string vertices in the non-

degenerate case can be easily extended to the degenerate case. One gets again the vertex

V (x; k,A) = e
ikiX

i
L(0)

(x)
Λ(k1,k2),A

where the momentum is given by:

(k1, k2) =
1√
α′

(

n1

N
,

n2

N/g

)

.

By analogy with eq. (3.38) we take, for the momentum dependent Chan-Paton factor, the

following expression:

Λ(k1,k2),A =
1√
N

ei π
N

n1(ĥ2n2+AN/g)
(

Q
ĥ2n2+A N

g

N P−n1
N

)

.

It satisfies the hermiticity property

Λ†
(k1,k2),A

= Λ(−k1,−k2),−A

and the multiplication rule

Λ(k1,k2),AΛ(l1,l2),B =
1√
N

e
iπ

√
α′N
g

(k1B−l1A)
e
i 1

g
k∧l

Λ(k1+l1,k2+k2),A+B.
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4. Narain branes

In the previous section we have constructed the boundary state and the open string vertex

operators corresponding to wrapped space-filling branes with a background gauge field

living on their worldvolume. They are described by gauge bundles. However, as we have

pointed out in the introduction, this is not necessarily the unique way of describing wrapped

magnetized space-filling branes and in this section we discuss another kind of space-filling

branes, the Narain branes. Their name is due to the fact that they can be obtained from

the usual branes without a background gauge field by means of a transformation of the

Narain T-duality group O(d̂, d̂, Z) which is reviewed in appendix C. We construct the

boundary state corresponding to this kind of branes and show that it is coincident (up to a

phase which does not contribute to the one-loop vacuum amplitude) with the one already

constructed in the previous section for the gauge bundles. Then we add Wilson lines to

this boundary state in the case F = 0 in order to describe a D-brane wrapped N times

around a torus and analyze their transformation properties under the Narain group, and

then generalize to the case F 6= 0. We give the vertex operators for the open strings having

their endpoints attached to the Narain branes, showing that their scattering amplitudes

with closed strings are different from those that one derives from the gauge bundles. In

all the examples we will explicitly refer to the tachyon vertex because it encodes the main

features of the problem, the generalization to all other vertices being straightforward.

4.1 Narain branes from plain brane: general case.

In this section we consider the bosonic string, taking as our starting point a D25 brane in

a generic constant closed string background Et with no background gauge field (F t = 0)

on its worldvolume. By applying on it a general transformation of the T-duality group, we

get what we call the most general Narain brane having a non-vanishing constant magnetic

field F on its worldvolume.

We start with a plain D25 on R1 ⊗ T 25 whose boundary state satisfies the boundary

conditions in eq. (B.23) with F t = 0:

[

Gt
ij(Ẋ

t)
j
+ Bt

ij(X
′t)

j
]

τ=0
|D25(Et, F t = 0)〉 ≡ P t

i |D25(Et, F t = 0)〉 = 0 (4.1)

The solution of these equations is given in eqs. (B.28) and (B.29) for d = 26.

We now perform a canonical transformation as in eqs. (C.1), (C.2) such that D̂−1Ĉ is

a well-defined quantity, then the boundary defining eq. (4.1) becomes

[

Pi + (D̂−1Ĉ)ij
X ′j

2πα′

]

|D25(E,F 〉 = 0 (4.2)

that is equal to eq. (B.23) with the following gauge field:

F̂ = 2πα′q F = −D̂−1Ĉ = ĈT D̂−T . (4.3)

The last equality follows from the entry (2, 2) of eq. (C.13). Here q is the electric charge.
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Under this transformation the zero mode part of the boundary (B.29) becomes:

|D25(E,F )〉zm = |D25(Et, F t = 0)〉zm

=
√

det D̂
√

det E
(detG)1/4

∑

s∈Z25

|ni = (ĈT )ijs
j,mi = D̂T i

js
j〉

=
√

det D̂
√

det E
(detG)1/4

∑

s∈Z25

|ni = 2πα′qFijm
j,mi = D̂T i

js
j〉 (4.4)

where in the first equality we have written the boundary state with a non-vanishing gauge

field as the one in eq. (B.29) with nt
i = 0 and mt i = si. By rewriting those variables in

terms of n and m given in the upper equation in (C.15) one gets the second line of eq. (4.4)

that can finally be written as in the third line by means of eq. (4.3). A detailed explanation

of the normalization factor is given in ref. [18] and reviewed in appendix C. Finally, when

det D̂ 6= 0, the complete boundary state (B.28) satisfying eq. (4.2) is:

|D25(E,F )〉 =
T25

2

√

det D̂
√

det E
(detG)1/4

∑

s∈Z25

|ni = 2πα′qFijm
j ,mi = D̂T i

js
j〉

×e−
P∞

n=1
1
n

αi
−nEik(E−T )khGhj α̃j

−n |0a, 0ã〉e−
P∞

n=1
1
n

α0
−nG00α̃0

−n |k0 = 0〉. (4.5)

By construction this boundary state satisfies eq. (B.23) with F̂ given in eq. (4.3). Notice

also that this construction is valid for an arbitrary torus T d̂.

4.2 Special cases

T-duality on a factorized torus. In section 3 we have given the boundary state of a

wrapped magnetized brane in the gauge bundle description. We would like here to compare

this with the boundary state corresponding to a Narain brane. To this aim, we consider the

simple case in which the compact space is a factorized torus. In particular, we can focus

on a single T 2, being the generalization to (T 2)d̂/2 straightforward, and as a very special

example we consider the canonical transformation acting in the first torus T 2
(1) along the

directions 1 and 2 realized by the matrix:

Λ2(p(1), q(1)) =

(

r(1)I is(1) σ2

−ip(1) σ2 q(1)I

)

. (4.6)

By imposing the condition Λ2(p(1), q(1)) ∈ O(2, 2, Z) (see eq. (C.3)) we get:

J =

(

0 (r(1) q(1) − s(1) p(1))I

(−s(1) p(1) + r(1) q(1))I 0

)

which implies that r(1)q(1) − p(1)s(1) = 1. From eqs. (C.2) and (4.6) we can see that:

det D̂ = q2
(1).
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This T-duality transforms a plain D-brane into a configuration of a D-brane with a gauge

field strength given by (see eq. (4.3)):

2πqα′F = −D̂−1Ĉ =

(

0
p(1)

q(1)

−p(1)

q(1)
0

)

=
p(1)

q(1)
iσ2.

From this equation we can see that 2πqα′F12 is an integer number. This realizes eq. (1.3)

according to the second logical possibility discussed in the Introduction, not coming the

integer q(1) from any trace over the gauge group. The latter condition is the first hint that

the Narain branes are branes wrapped q(1) times on the entire torus.

In this case eq. (4.2) becomes

[P1 −
p(1)

q(1)

X ′2

2πα′ ]|D25(E,F )〉 = [P2 +
p(1)

q(1)

X ′1

2πα′ ]|D25(E,F )〉 = 0

where the zero-mode part of the boundary is now given by (see eq. (4.4))

|D25(E,F )〉zm=
q(1)

√

det E(1)
(

detG(1)

)1/4

∑

s1,s2∈Z

|n1 = p(1)s
2, n2 = −p(1)s

1,m1,2 = q(1)s
1,2〉 (4.7)

The factor q(1) appearing in front of the boundary in the previous equation confirms

that a Narain brane can be interpreted as a brane wrapping q(1) times the whole torus.

Indeed the area of such an object, its Dirac-Born-Infeld action (DBI) and therefore the

boundary state normalization should be proportional to q(1) because the brane covers q(1)

times the compact manifold and this indeed happens in eq. (4.7).

The boundary state in eq. (4.7) coincides with the one given for the non-abelian branes,

see for example eq. (3.29), with the identification q(1) = N1. The only difference between

the two is in the phase factor written in eq. (3.35). As already stressed in the Introduction,

this factor does not influence the one-loop free energy.

We can consider the more general case in which the T-duality acts on each torus T 2
(α)

as in eq. (4.6) with parameters p(α), q(α), getting:

|D25(E,F )〉zm =

d̂
2

∏

α=1

[

q(α)

√

det E(α)
(

detG(α)

)1/4

∑

s2α, s2α−1∈Z

|n2α−1 = p(α)s
2α, n2α = −p(α)s

2α−1〉

×|m2α−1 = q(α)s
2α−1, m2α = q(α)s

2α〉
]

.

Plain Dp branes. In order to make contact with the kind of T-duality that transforms

Neumann into Dirichlet boundary conditions and viceversa, we consider another particular

case of the Narain T-duality group. We still consider a non-magnetized space filling brane,

and on it we act with the special case of the standard T-duality, given by:

Λ =











Ip 0p

0d−p Id−p

0p Ip

Id−p 0d−p











(4.8)
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with d = 25. This T-duality transforms a plain D25 into a configuration of a plain Dp

P t
i |D25(Et, F t = 0)〉 = 0

⇒ Pi‖ |Dp(E,F = 0)〉 = X ′i⊥ |Dp(E,F = 0)〉 = 0

with i‖ = 1, . . . p and i⊥ = p + 1, . . . , d. Let us give the transformation property of the

boundary state under the T-duality transformation in eq. (4.8). The non-zero modes of

the boundary state transform according to eq. (C.19) with

(Ĉ + D̂E)T (−Ĉ + D̂ET )−T =

(

(E‖ ‖)
T (E‖ ‖)

−1 0

2E⊥ ‖(E‖ ‖)
−1 −I⊥⊥

)

where E‖ ‖ =‖ Ei‖j‖ ‖, E‖ ⊥ =‖ Ei‖j⊥ ‖, and so on. The zero modes transform according

to eq. (C.15). Thus the boundary state becomes:

|Dp(E,F = 0)〉 =
T25

2

√

detp E‖ ‖

(detG)1/4

∑

s∈Z25

|n‖ = 0, n⊥ = s⊥,m‖ = s‖,m⊥ = 0〉

× e
−

P∞
n=1

1
n

α
i‖
−n(ET

i‖k‖
(E−1)

k‖h‖Gh‖j‖ α̃
j‖
−ne

−2
P∞

n=1
1
n

α
i⊥
−nET

i⊥k‖(E−1)
k‖h‖(Gh‖j‖ α̃

j‖
−n

× e+
P∞

n=1
1
n

α
i⊥
−nGi⊥j⊥ α̃

j⊥
−n |0a, 0ã〉e−

P∞
n=1

1
n

α0
−nG00α̃0

−n |k0 = 0〉

where the terms with ET
⊥ ‖(E‖ ‖)

−1 are present since the reflection conditions

P‖|Dp(E,F = 0)〉 = 0 mix both α‖ and α⊥.

4.3 General transformation of F under T-duality

We want now to determine how F and Θ transform under T-duality. Let us start from a

D25 brane with a constant F

[

Pi − F̂ij
X ′j

2πα′

]

|D25(E,F )〉 = 0

and then perform a T-duality transformation given by the matrix Λ−1 in eq. (C.11). In so

doing we get:

[

(ÂT − F̂ B̂T )ijP
t
j + (ĈT − F̂ D̂T )ij

Xt ′ j

2πα′

]

|D25(Et, F t)〉 = 0

It is then easy to find that when

det(Â + B̂F̂ ) 6= 0

the system still describes a D25 brane

[P t
i − F̂ t

ij

Xt ′ j

2πα′ ]|D25(Et, F t)〉 = 0.
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Indeed if det
(

Â + F̂ B̂
)

6= 0, eq. (4.9) can be written as:

(

Â + B̂F̂
)T

[

P t +
(

Â + B̂F̂
)−T (

Ĉ + D̂F̂
)T X ′t

2πα′

]

|D25(Et, F t)〉 = 0.

By comparing this equation with eq. (4.9), we get:

F̂ t = −(ÂT − F̂ B̂T )−1(ĈT − F̂ D̂T ) = (Ĉ + D̂F̂ )(Â + B̂F̂ )−1. (4.9)

Notice that

F̂ t = 0 ⇒ F̂ = D̂−1Ĉ = ĈT D̂−T . (4.10)

On the other side, when det(Â + B̂F̂ ) = 0, some directions acquire Dirichlet boundary

conditions. In particular when

Â + B̂F̂ = 0

eq. (4.9) reduces to

Xt′i|D1(Et)〉 = 0

corresponding to pure Dirichlet boundary conditions.

When det(Â + B̂F̂ ) 6= 0 we can then evaluate how E transforms:

E t = EtT + F̂ t = (Â + B̂E)−T (Ĉ + D̂E)T + (Ĉ + D̂F̂ )(Â + B̂F̂ )−1

where we have used eqs. (C.16) and (4.9), together with eqs. (C.13) and (C.14). One can

equivalently write:

E t = = EtT + F̂ t = (Â + B̂F̂ )−T E(Â − B̂ET )−1. (4.11)

From them we deduce

Gt −1 = (Â + B̂F̂ )G−1(Â + B̂F̂ )T = T (F ) G−1 T T (F ) (4.12)

Θt = (Â + B̂F̂ )Θ(Â + B̂F̂ )T + B̂(Â + B̂F̂ )T = T (F ) Θ T T (F ) + B̂T T (F ) (4.13)

with G and Θ defined in appendix A. Here we have introduced the matrix

T (F ) = (Â + B̂F̂ ) = (D̂ − F tB̂)−T = T t −1(F t) (4.14)

and used the relation:

T (F )B̂T + B̂T T (F ) = 0.

Notice the important fact that Θ does not transform “tensorially” under a T-duality but

it behaves like a connection and has a shift term.

The inverses of the previous equations can be obtained using eq. (C.11), i.e Â ↔
D̂T , B̂ → B̂T , Ĉ → ĈT and exchanging t quantities with those without t. In comparing this

set of equations with the one we have written we find

(Â − B̂ET ) = (D̂ − EtB̂)−T , (Â + B̂E) = (D̂ − EtT B̂)−T
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4.4 Adding Wilson lines to the boundary state

In section 3.1 we have seen that a D-brane with F = 0 wrapped N -times around a torus

can be described as a brane with gauge group U(N) and a Wilson line background which

induces a non trivial holonomy [8]. The boundary state description for such a brane can

therefore be obtained turning on Wilson lines to the boundary state discussed in section 4.1

in the special case F t = 0. More explicitly we have to compute:

|D25(Et, F t = 0, at)〉 = Tr Peiq
R π
0 dσ at

iX
′t i |D25(Et, F t = 0)〉

=
N

∑

b=1

ei2π
√

α′qat b
i m̂i |D25(Et, F t = 0)〉

=
T25

2

√
detEt

(detGt)1/4
|D25(Et, F t = 0)〉nzm

×
N

∑

b=1

∑

s∈Z25

ei2π
√

α′qat b
i si |nt

i = 0,mt i = si〉.

Let us also explore the effect of a T-duality transformation on the Wilson line itself. By

performing a T-duality on the previous expression one is immediately led to:

|D25(E,F, a)〉 =
T25

2

√

det D̂
√

det E
(detG)1/4

|D25(E,F )〉nzm

×
N

∑

b=1

∑

s∈Z25

ei2π
√

α′qat b
i si |ni = ĈT i

js
j ,mi = D̂T i

js
j〉.

Since we expect the Wilson line to be multiplied by the winding mi = D̂T i
js

j we deduce

that

at b
i D̂−T i

j = ab
j ⇒ at bT (F ) = ab (4.15)

where we have used eq. (4.14) for the special case F t = 0 and assumed that the transfor-

mation must be dependent on F .

In order to extend the previous discussion to the case in which both a Wilson line

background and an abelian background gauge field F (proportional to the unity) are turned

on, one can follow the same procedure since Ai(x)+ai can be added to the boundary either

as tr Peiq
R π

0
dσ (Ai+ai)X′t i

or in two steps by computing tr eiq
R π

0
dσ aiX′t i

eiq
R π

0
dσ AiX′t i

.

By choosing the second procedure, one starts with a boundary with F t = 0, then one

constructs the one with F 6= 0 by means of a T-duality transformation with matrix Λ0 and

finally one adds Wilson lines. In this way one gets:

|D25(E,F, a)〉 = tr Peiq
R π
0 dσ aiX

′i |D25(E,F )〉 =
N

∑

b=1

ei2π
√

α′qab
i m̂i |D25(E,F )〉

=
T25

2

√

det D̂0

√
det E0

(detG)1/4
|D25(E,F )〉nzm

×
N

∑

b=1

∑

s∈Z25

ei2π
√

α′qab
i D̂T

0
i
jsj |ni = ĈT

0
i
js

j,mi = D̂T
0

i
js

j〉 (4.16)
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where F̂ = ĈT
0 D̂−T

0 , |D25(E,F )〉nzm is the non zero mode part of the boundary, and m̂i is

the winding operator.

Finally one can study the transformation properties of the Wilson lines under T-duality

in the case F 6= 0. Performing a second T-duality transformation with matrix Λ (see (C.1))

on the previous boundary, its zero mode part becomes (see eq. (C.9))

|D25(Et, F t, at)〉zm =

N
∑

b=1

∑

s∈Z25

ei2π
√

α′qab
i D̂T

0
i
jsj

×|nt = (ĈD̂T
0 + D̂ĈT

0 )s,mt = (ÂD̂T
0 + B̂ĈT

0 )s〉

from which we get the transformation rule of the Wilson line under T-duality:

aT
b D̂T

0 = atT
b (ÂD̂T

0 + B̂ĈT
0 ) ⇒ aT

b = atT
b T (F )

which is valid for the case det T (F ) 6= 0; when detT (F ) = 0 there are directions xd with

DD boundary conditions where it is not possible to add Wilson lines anymore as in (4.16)

but it is possible to move the brane by ei
R π
0 dσ ∆dẊd

.

4.5 Vertex operators and scattering amplitudes in Narain branes

In the previous subsections we have studied how the boundary state and a gauge field F̂

living on a D25 brane transform under the most general T-duality transformation. In par-

ticular we have seen that, starting from a configuration without gauge fields on the branes,

the T-duality transformation, performed by the matrix Λ given in eq. (C.2), provides a

configuration with a non-zero gauge field given in eq. (4.10). Moreover also the boundary

state acquires the same gauge field (eq. (4.5)). In this way one can obtain a theory with

a non-zero gauge field from a theory without it. Of course, if we transform not only the

operators but all quantities appearing in a string amplitude, as for instance the momenta

of the external particles, nothing will change because T-duality is a symmetry of string

theory.

In this section we want to extend this procedure to the vertex operators. Since we

know that we are going to get a theory with a gauge field given by F̂ = ĈT D̂−T , we can

immediately write the vertex operators describing the emission of open string tachyons.

They are given by:

V(0)(x; k) = eiD0(k,F̂ ,B;p̂) : e
i
“

k0X0
L(x)+kiX

i
L(0)

(x)
”

:

V(π)(y; k) = eiDπ(k,F̂ ,B;p̂) : e
i
“

k0X0
L(x)+kiXi

L(0)
(y)

”

: (4.17)

where we assume that all the spatial directions are compactified. Here x = |x|, y = |y|eiπ.

We consider only one of such branes and consequently we do not need to introduce any

Chan-Paton factor. The factors eiD0,π(k,F̂ ,B;p̂) are the cocycles phase factors [36] and are

necessary to have a well-defined theory of open and closed strings. They can be explicitly

derived by requiring the theory to satisfy certain specific constraints such as the commu-

tativity among open and closed string vertices and a proper behavior of the vertices under
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Hermitian conjugation. Cocycles play an important role in determining whether the the-

ory is commutative or not. However, their explicit knowledge is not crucial for discussing

the main features of Narain branes and for comparing them with the non-abelian bundle

description of magnetized branes. Therefore we postpone their explicit evaluation and the

discussion about the commutation property of the theory to further developments.

Before going on, let us now spend a few words about how eq. (4.17) can be derived.

The vertex operator for an open string tachyon is obtained by inserting in the exponent of

the vertex operator the string coordinate in eq. (2.15), computed at one of the endpoints

of the open string. But then, for instance in the case of σ = 0, one can use eqs. (B.47) and

express it in terms of Xi
(0)L, apart from a phase that contributes to the cocycle that we are

anyway not considering as explained above. A similar reasoning can also be used for the

other endpoint.

Let us now consider the vertex for the closed string tachyon. If the vertex has to be

used in an amplitude with only closed strings (sphere diagram), then, apart from a cocycle

factor, it is given by:

WTc(z, z̄; kL, kR) =: e(ik0X0(z,z̄)+kLiX
i
L(z)+kRiX̃

i
R(z̄)) : (4.18)

where XL and X̃R are given respectively in eqs. (B.10) and (B.11) and the variables z and

z̄ are defined in the entire complex plane.

On the other hand, the vertex for the closed string tachyon describing interactions on

the disk diagram is given by [37, 35, 36]

WTc(z, z̄; kL, kR, y0) = eiDC(k,F̂ ,B;p̂) (4.19)

: e
i
h

1
2
k0X0

L(z)+kLi(G
−1E)i

jXj

L(0)
(z)

i

:: e
i
h

1
2
k0X0

R(z̄)+kRi(G
−1ET )i

jXi
R(0)

(z̄)
i

:

Here z is defined in the upper half complex plane and the phase factor eiDC(k,F̂ ,B;p̂) are

the closed string cocycles. After having determined the open and closed string vertex

operators, one can then compute the scattering amplitudes involving them, but, before

doing that, let us first describe the action of T-duality on both the closed and open string

vertex operators. This will allow us to rederive eqs. (4.17) and, more importantly, to study

in which sense the Narain branes are wrapped branes.

Let us start from the closed string vertex given in eq. (4.18) and show that, under

a T-duality transformation, it keeps the same form. By considering of course only the

compact space part and extending the T-duality transformations in eqs. (C.6) to be valid

also for the coordinates Xi
L and X̃i

R, and not just for their derivatives, we get:

Xti
L = (A + BE)Xi

L ; Xti
L = (A− BET )X̃i

R.

On the other hand, we have to remember that also the external momenta kL and kR

transform according to eqs. (C.7) that, with eqs. kL,R i = Gijk
j
L,R and (C.17), imply the

following transformations:

k T
Li = kt T

Lj (Â + B̂E)ji k T
Ri = kt T

Rj (Â − B̂ET )ji. (4.20)
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By using the two previous equations, it is easy to see that the exponent in the vertex

operator remains the same in form:

kt T
Li Xti

L + kt T
Ri X̃ti

R = kT
LiX

i
L + kT

RiX̃
i
R

where the index T has been introduced here for the sake of clarity.

Let us consider now the vertex for the closed string tachyon to be used on a disk

amplitude given in eq. (4.19). From the transformation properties of the closed string

momenta given in eqs. (4.20) one can deduce the transformations under T-duality of the left

and right moving parts of the vertex operator by requiring that the closed string vertices,

written in open string formalism, are invariant in form under such a transformation. In

this way we get:

Gt −1E tXt
L(0)(z) = (Â + B̂E)G−1EXL(0)(z),

Gt −1E t T Xt
R(0)(z̄) = (Â − B̂ET )G−1ET XR(0)(z̄) (4.21)

for the left and right components of X.

But we have to take into account that in the open string formalism the left and right

parts are not independent because of the reflection conditions. They can be of two types

either Neumann or Dirichlet.

One can therefore distinguish two cases:

1. The reflection conditions are generalized Neumann boundary conditions7 in both the

original theory and in the T-dual one. This implies the two equations:

Xt
L(0)(x) = Xt

R(0)(x) ; XL(0)(x) = XR(0)(x). (4.22)

Thus, after imposing Xt
L(0)(x) = Xt

R(0)(x) and using XL(0)(x) = XR(0)(x) in

eq. (4.21), one gets:
(

Gt −1E t
)−1

(Â + B̂E)G−1E =
(

Gt −1E t T
)−1

(Â − B̂ET )G−1ET

= Â + B̂F = T (F ).

The third identity can be verified by using eqs. (C.17) and (4.11). From eqs. (4.21)

we find:

Xt
L(0)(z) = T (F ) XL(0)(z) Xt

R(0)(z̄) = T (F ) XR(0)(z̄) (4.23)

which can be simply interpreted as due to the fact that in the T-dual system distances

are rescaled by T (F ). Thus the boundary conditions in eq. (4.22) can both be imposed

when

detT (F ) = det(Â + B̂F̂ ) 6= 0.

After having examined the closed string vertices, we can now discuss what happens

to the open string vertices in eqs. (4.17). If we require them to remain invariant in

form, the following equation has to be imposed:

e
ikt T Xt

L(0)
(x)

= eikt T T (F ) XL(0)(x) = eikT XL(0)(x)

7We call these b.c. generalized Neumann because they are Neumann b.c. on the X(0) fields but not on

X ones; this in the spirit of the asymmetric rotation of [12].
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where we have used eq. (4.23) and

kT = kt T T (F ). (4.24)

This is the vertex that we have already written down in eq. (4.17). The transforma-

tions in eq. (4.23) are obviously consistent with the OPEs in eq. (B.48) when

Gt = T−T (F )GT−1(F )

which matches perfectly the first equation in (4.12).

2. The reflection conditions are generalized Neumann boundary conditions in the origi-

nal theory and mixed generalized Neumann and Dirichlet boundary conditions in the

T-dual one. This is the case when

detT (F ) = det(Â + B̂F̂ ) = 0.

This condition is very general and corresponds to various different generalized Neu-

mann and Dirichlet boundary conditions according to the number of zero eigenvalues

of the matrix T . For our discussion we consider a special subcase characterized by

the following condition:

T = Â + B̂F̂ = 0 ⇒ F̂ t = ∞.

This special case corresponds to the Dirichlet reflection conditions in all the compact

Xt coordinates:

Xt
L(0)(x) = −Xt

R(0)(x) ; XL(0)(x) = XR(0)(x). (4.25)

However in this case the T-dual coordinate does not have anymore the expansion in

eqs. (B.45) and (B.46), but one simply has (up to cocycles)

X̂t
L(z) = Xt

L(0)(z) ; X̂t
R(z̄) = Xt

R(0)(z̄).

Comparing the vertices in the two T-dual theories as in eq. (4.24) yields:

Xt
L(0)(x) = (Â + B̂E)G−1EXL(0)(x);

Xt
R(0)(x) = (Â − B̂ET )G−1ET XR(0)(x).

Hence, the boundary conditions in eq. (4.25) are consistent if the following equation

holds:

(Â + B̂E)G−1E = −(Â − B̂ET )G−1ET = B̂G.

This can be verified with the help of F̂ = −B̂−1Â. Therefore we get a relation between

the “momentum” (actually distance) in Dirichlet directions kt and the momentum k,

given by:

kT = ktT B̂G.
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Moreover, in both cases, by using eqs. (C.6) and (C.17), we have

T (z) = − 1

α′∂XT
L (z)G∂XL(z) = − 1

α′ ∂XtT
L (z)Gt∂Xt

L(z)

and, because of this, all conformal dimensions are preserved.

We are now ready to compute the scattering amplitudes involving open and closed

strings in the case of non-abelian and Narain branes, and compare them. As we will

see below, the amplitudes exhibiting a difference between the non-abelian and Narain

branes are the ones involving both open and closed strings. In particular, it is sufficient

to limit ourselves to external tachyons. We only consider the compact part of correlators

involving one closed string tachyon and M open string tachyons, up to phases that we have

systematically neglected in this paper. In the case of non abelian branes one gets

〈0|W (z, z̄; kL, kR)V (x1; k1) . . . V (xM ; kM )|0〉compact

= Tr

[

M
∏

i=1

Λ
(k

(i)
1 ,k

(i)
2 )

]

A(z, z̄, xr, ki)δET G−1kL+EG−1kR+
PM

r=1 kr,0 (4.26)

while for the Narain branes one gets

〈0|W (z, z̄; kL, kR)V (x1; k1) . . . V (xM ; kM )|0〉compact

= A(z, z̄, xr, ki)δET G−1kL+EG−1kR+
PM

r=1 kr,0

where

A(z, z̄, xr, ki) ≡
M
∏

r=1

(z − xr)
2α′kT

LG−1EG−1kr(z̄ − xr)
2α′kT

RG−1ET G−1kr

×
M
∏

1=r<s

(xr − xs)
2α′kT

r G−1ks (z − z̄)2α′kT
LE−T EG−1kR . (4.27)

Eqs. (4.26) and (4.27) are easily seen to differ only for the trace over the Chan Paton factors

which is given in eq. (3.39). This is the consequence of the fact that the vertex operators

for closed string tachyons is the one given in eq. (4.18) for both theories, while the ones

for open string tachyons have the same operatorial part as those in eq. (4.17), but those in

the non-abelian branes have in addition momentum dependent Chan-Paton factors, given

in eq. (3.38).

By using the formulas in the appendices it is easy to show that the δ-function which

is common to the two correlators gives:

ni − F̂ijm
j +

M
∑

r=1

nr
i

N
= 0 ; i = 1, 2

in terms of the momentum ni and winding number mi of the closed string and the momenta
nr

i

N of the open strings. For the sake of simplicity we have restricted our analysis to the two

direction of a torus T 2. Using eq. (1.2) in the previous equation one gets:

n1 −
mm2

N
+

M
∑

r=1

nr
1

N
= n2 +

mm1

N
+

M
∑

r=1

nr
2

N
= 0 (4.28)
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They can be satisfied only if the following relations holds

M
∑

r=1

nr
1 − mm2 = s1N ;

M
∑

r=1

nr
2 + mm1 = s2N (4.29)

where s1 and s2 are arbitrary integers. Finally inserting them back in eq. (4.28) one gets:

n1 + s1 = n2 + s2 = 0 (4.30)

The constraint imposed by the δ-function can be satisfied only if eqs. (4.29) and (4.30) are

satisfied

In the case of non-abelian branes the trace over the Chan Paton factors imposes the

following additional constraints:

√
α′N

M
∑

r=1

kr
1,2 =

M
∑

r=1

nr
1,2 = r1,2N

where r1,2 are integer numbers.

In conclusion, for non-abelian branes the relations in eq. (4.31) must be considered

together with eqs. (4.29) and (4.30). Therefore the class of solutions that one gets for the

Narain branes is bigger than the one for the non-abelian branes and this means that the

two theories are not equivalent. Notice, however, that a difference can be noticed only if

the scattering amplitude involves at least one closed string. If we had only open strings

then one would get precisely the same conditions for the two cases. The same is true for

the case of a closed string with ni = mi = 0.

In the previous section we have shown that the non-abelian branes provide a description

of branes wrapped N times on the torus T 2 through the introduction of a non-abelian

gauge bundle based on the gauge group U(N). In other words, the wrapping number N is

provided by the order of the gauge group. This is the reason why for this kind of branes we

must introduce Chan-Paton factors that turned out to be momentum dependent. In the

case of the Narain brane we do not have any non-abelian gauge field. Then in what sense

do the Narain branes provide a description of wrapped branes? Or can we say that the

Narain branes provide an alternative description of them? And if yes, what is the precise

meaning to give to this claim?

In the introduction we have discussed two possibilities for obtaining eq. (1.2). The

first one is based on the presence of a non-abelian gauge bundle and this is the one realized

by the non-abelian branes. In the following, we aim to show that the Narain branes seem

to realize the other possibility discussed around eq. (1.3). In order to see how this comes

about, we have to study what happens to the open string coordinate when we go around

the torus. This is what we are going to discuss in the last part of this subsection.

We start rewriting the tachyon open string vertex operator in eq. (4.17) for a Narain

brane which is obtained through a T-duality from a plain brane with F t = 0, as follows:

V(0)T,c(x; k) ∼: e
ikt

i(D̂−T )i
jXj

L(0)
(x)

:
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where we used T (F ) = D̂−T (because of eq. (4.14)). The fact that
√

α′kt
i ∈ Z immediately

implies that the theory is invariant under

X → X + 2π
√

α′D̂T s ∀s ∈ Z25

while in the original theory the vertex operator was only invariant under

Xt → Xt + 2π
√

α′s.

The periodicity of the open string coordinate can also be verified directly starting from the

operator which performs a shift of Xt → Xt + 2πs and rewriting it in the T-dual theory

T t
s = e2πi sTGtpt

= e2πi sTGtT (F )p = e2πi sT T−T (F )Gp = e2πi (D̂T s)T Gp = TD̂T s.

In order to see more explicitly what happens it is convenient to specialize the previous

discussion to the first case treated in section 4.2. There, T-duality acts on each torus T 2
(t)

as in eq. (4.6) with parameters (p(t), q(t)). It is straightforward to write the compact part

of the tachyonic vertex, in fact, by focusing only on the first torus:

V(0)T,c(x; k) ∼: e
i

n1X1
L(0)

(x)+n2X2
L(0)

(x)
√

α′ q(1) :

where the compact momentum is
√

α′ k =
(

n1
q(1)

, n2
q(1)

)

with all n integers.

Unlike the open string vertices in the case of non-abelian branes, these vertices have

no Chan-Paton factors and describe objects with non-trivial wrapping

X1,2 = X1,2 + 2π
√

α′q(1)s.

As discussed in section 4.2, the normalization factor in front of the boundary state in

eq. (4.7) suggests that a Narain brane is a brane wrapped q times around the whole torus.

This means that the previous periodicity conditions have to be interpreted as simultaneous

conditions on X1 and X2 (in the case of T 2)

(X1,X2) = (X1 + 2π
√

α′q(1)s,X
2 + 2π

√
α′q(1)s)

while

(X1,X2) 6= (X1,X2 + 2π
√

α′q(1)s) (X1,X2) 6= (X1 + 2π
√

α′q(1)s,X
2)

This is consistent with the fact that, with the special choice of the T-duality transformation

given in eq. (4.6), the matrix D̂ is purely diagonal with two identical entries.

In conclusion, the theory based on the Narain branes seems to provide a description

of branes wrapped on the two-cycle of the torus, that is different, rather than alternative,

from that provided by the non-abelian branes. A further study of these two different

formulations of wrapped branes is needed to better clarify their physical properties and

what kind of wrapped branes they really describe.
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A. Conventions

• Indices:

Non-compact µ, ν = 0, . . . 25 − d̂;

Compact i, j, · · · = 1, . . . d̂;

• δ
[N ]
m,n means m ≡ n mod N ;

• ’t Hooft matrices PN and QN :

PN =













0 1 . . . 0
...

. . .
. . .

0 . . . 1

1 0 . . . 0













; QN = e
πi(1−N)

N













1 . . . 0

0 e
2iπ
N . . .

...
. . .

...

0 . . . e2iπ
(N−1)

N













satisfying the commutation relation:

PN QN = QN PN e2π i/N . (A.1)

• Background matrices:

E = ‖ Eij ‖= G + B

E = ‖ Eij ‖= ET + 2πα′q0F = G − B (A.2)

and

F̂ = 2πα′q0F

B = B − 2πα′q0F = B − F̂

E−1 = G−1 − Θ

from which we deduce that

EG−1ET = ETG−1E = G

Θ =
1

2

(

E−T − E−1
)

= −E−1BE−T

B. Review of open and closed strings in flux background

In this appendix we review the solution of closed string equations of motion in constant

backgrounds on a torus in order to fix our notations and give some technical details about

the open string solution as well.

– 36 –



J
H
E
P
1
1
(
2
0
0
7
)
1
0
0

B.1 Action and equations of motion

Let us consider the action for the spatial coordinates, labelled by the indices a, b =

1, . . . , d − 1, of a bosonic string8 interacting with a constant gravitational and a Kalb-

Ramond background that is given by eq. (2.2).

Constant gravitational and Kalb-Ramond fields naturally arise when considering string

theory on a d̂-dimensional torus T d̂.9 Toroidal compactification requires the following

equivalence relation to be satisfied by any point xi (i = 1, . . . , d̂) of the torus T d̂:

xi ≡ xi + 2π
√

α′mi (B.1)

where mi is an arbitrary integer. This relation has to be satisfied also by the string

coordinates themselves:

Xi ≡ Xi + 2π
√

α′mi. (B.2)

The classical equation of motion for the string coordinates derived from S is given by

the usual free two-dimensional wave-equation:

∂α∂αXj = 0. (B.3)

In order that the action be stationary under the general variation Xi → Xi + δXi we must

also impose either the closed string boundary condition

Xi(τ, σ + π) ≡ Xi(τ, σ) (B.4)

or one of the two boundary conditions at σ = 0:

Xi|σ=0 = const

Gij∂σXj + Bij∂τXj |σ=0 = 0. (B.5)

and similarly, and independently, at σ = π.

In the presence of such non trivial backgrounds the string conjugate momentum density

turns out to be:

Pi ≡
∂L

∂Ẋi
=

1

2πα′

[

GijẊ
j + BijX

′j
]

⇒ Ẋi = 2πα′GijPj − GikBkj(X
′)j (B.6)

and the Hamiltonian is given by:

H =

∫ π

0
dσ

[

Pi(Ẋ)i − L
]

=
1

4πα′

∫ π

0
dσGij

(

ẊiẊj + X
′iX

′j
)

. (B.7)

By plugging eq. (B.6) in eq. (B.7) we get:

H = π

∫ π

0
dσ

[

α′PiG
ijPj +

1

π
(X ′)iBijG

jkPk +
1

(2π)2α′ (X
′)i

(

Gij − BikG
khBhj

)

(X ′)j
]

.

(B.8)

8Although we consider the bosonic string where d = 26, we leave d arbitrary because many of the results

are also valid for the superstring where d = 10.
9We assume that d̂ spatial coordinates are compact, while the remaining d − 1 − d̂ are non-compact.
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B.2 General solution for the closed string

The general solution of (B.3) compatible with the closed-string boundary condition (B.4)

is:10

Xi(σ, τ) =
1

2

(

Xi
L(τ + σ) + X̃i

R(τ − σ)
)

(B.9)

where the left and right moving parts are defined as follows:

Xi
L(τ + σ) = xi

L + 4α′GijpLj(τ + σ) + i
√

2α′
∑

n 6=0

1

n
αi

ne−2in(τ+σ), (B.10)

X̃i
R(τ − σ) = xi

R + 4α′GijpRj(τ − σ) + i
√

2α′
∑

n 6=0

1

n
α̃i

ne−2in(τ−σ). (B.11)

One has:

xi = xi
L = xi

R ;
pi

2
= pLi = pRi

in non-compact directions and

pLi =
1

2
√

α′

[√
α′pi − Bijm

j + Gijm
j
]

pRi =
1

2
√

α′

[√
α′pi − Bijm

j − Gijm
j
]

(B.12)

in compact directions, where mi ∈ Z is the winding number. We can invert those relations

getting

mi =
√

α′Gij(pLi − pRi) pi = EijG
jkpLk + (ET )ijG

ikpRk

where we have defined:

Eij ≡ Gij + Bij.

By expressing the conjugate momentum in eq. (B.6) in terms of the oscillators one gets:

Pi =
pi

π
+

1

π
√

2α′

∑

n 6=0

[

(Gij − Bij)α̃
j
ne−2in(τ−σ) + (Gij + Bij)α

j
ne−2in(τ+σ)

]

=
1

2πα′
[

Eij∂+Xi + (ET )ij∂−Xi
]

(B.13)

where also the following relation has been used:

∂Xi

∂σ
= 2mi

√
α′ +

√
2α′

∑

n 6=0

[

−α̃i
ne−2in(τ−σ) + αi

ne−2in(τ+σ)
]

= ∂+Xi − ∂−Xi. (B.14)

Of course, along the non-compact directions one has to set mi ≡ 0.

10With respect to the notation used in [18] we have exchd α ↔ α̃.
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The quantization of the theory is obtained by imposing the following commutation

relations:

[xi
L, pLj ] = iGi

j [xi
R, pRj ] = iGi

j

[αi
m, αj

n] = mGijδn+m,0 [α̃i
m, α̃j

n] = mGijδn+m,0

Those for the non-zero modes follow from imposing the canonical commutation relations,

while those involving the zero modes are a consequence of the canonical commutation

relations and of T-duality that requires to consider operators both xL,R and pL,R and not

only the combinations xR + xL and pR + pL.

In a compact space, like T d̂, the total momentum pi =
∫ π
0 dσ Pi has to be quantized

since all physical states must be translational invariant under the shift in eq. (B.1), hence

for all compact directions i one has:

√
α′pi = ni ∈ Z. (B.15)

By inserting the expansions in terms of the oscillators in the Hamiltonian (B.8) one

gets that the spectrum is given by the following quantity:11

H

2
=

1

2
ZT MZ +

1

2

∑

n>0

Gij :
[

αi
−nαj

n + αi
nαj

−n + α̃i
−nα̃j

n + α̃i
nα̃j

−n

]

: (B.16)

where

Z ≡
(

n̂j

m̂j

)

, M ≡
(

Gij −GikBkj

BikG
kj Gij − BikG

khBhj

)

. (B.17)

being n̂i and m̂i operators. It is also easy to see that:

1

2
ZTMZ =

1

2

[

n̂iG
ij n̂j − 2n̂iG

ijBjkm̂
k + m̂i

(

Gij − BikG
khBhj

)

m̂j
]

. (B.18)

The Hamiltonian can also be written as follows:

H

2
= L0 + L̃0 (B.19)

with the explicit expressions of L0 and L̃0 given by:

L0 = α′pLipLjG
ij +

∞
∑

n=1

Gij : αi
−nαj

n : ; L̃0 = α′pRipRjG
ij +

∞
∑

n=1

Gij : α̃i
−nα̃j

n : (B.20)

where

p0

@

Li

Ri

1

A

=
1

2
√

α′
[

n̂i − Bijm̂
j ± Gijm̂

j
]

. (B.21)

11From now on we consider the quantity H
2

instead of just H because it is this quantity that determines

the spectrum of the theory with the correct normalization.
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It is straightforward to check that the level matching condition is given by;

L̃0 − L0 = n̂im̂
i +

∞
∑

n=1

Gij

[

αi
−nαj

n − α̃i
−nα̃j

n

]

= 0. (B.22)

The vacuum is then defined as the state satisfying the following conditions

pi
L|0, 0̃〉 = pi

R|0, 0̃〉 = αi
n|0, 0̃〉 = α̃i

n|0, 0̃〉 = 0 ∀n > 0

The momentum states are normalized as

〈ni,m
i|n′

i,m
′i〉 = 2π

√
α′δni,n′

i
δmi,m′i

for any compact direction xi and

〈kµ|k′
µ〉 = 2πδ(kµ − k′

µ)

for any non-compact spatial direction xa (a = µ 6= i) and for the time direction (µ = 0).

In the following we will consider the boundary state corresponding to a space filling

brane. In this case, if one starts from eq. (2.14) with the substitution σ ↔ τ , one can write

the equation that the boundary state has to satisfy, namely:

[

Gij∂τX
j + (Bij − 2πα′qFij)∂σXj

]

τ=0
|B〉 = 0. (B.23)

In eq. (B.23) one has to insert the general solution of the classical equations of mo-

tion (B.3) compatible with the closed string boundary condition Xi(τ, σ + π) ≡ Xi(τ, σ).

Such solution is given in eq. (B.9).

In doing that one gets the following conditions

(n̂i − 2πα′qFijm̂
j)|B〉 = 0 (B.24)

and
[

(

Gij − Bij + 2πα′qFij

)

α̃j
n +

(

Gij + Bij − 2πα′qFij

)

αj
−n

]

|B〉 = 0 (B.25)

that can also be written as follows (by using eq. (B.32)):
(

Eijα̃
j
n + ET

ijα
j
−n

)

|B〉 = 0, (B.26)

being qF = q0F0 on the boundary at σ = 0 and qF = qπFπ on the boundary at σ = π.

It is easy to rewrite eq. (B.24) as follows:
[

Eijp
j
R + ET

ijp
j
L

]

|B〉 = 0 (B.27)

where Eij is defined in eq. (2.18) and pi
L,R = Gijpj;L,R.

For later use here we give the explicit form of the boundary state for a D25 brane that

satisfies eqs. (B.26) and (B.27) with Fij = 0 (Tp =
√

π

2
d−10

4

(2π
√

α′)
d
2
−2−p) :

|D25〉 =
T25

2
e−

P∞
n=1

1
n

αt i
−n(ET )ik(E−1)khGhj α̃t j

−n |D25〉zm,c

×e−
P∞

n=1
1
n

αt 0
−nG00α̃t 0

−n |k0 = 0〉 (B.28)
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where the time direction has been added and the compact zero modes part is given by:

|D25〉zm,c =

√
detE

(det G)1/4

∑

s∈Z25

|ni = 0,mi = si〉. (B.29)

In the next sections we will include the dependence on Fij on the boundary state of a space

filling brane.

B.3 General solution for open strings: some technical details

In this section we solve the equation of motion and the boundary conditions in eq. (2.14)

for an open string. To this purpose it is convenient to rewrite eq. (2.14) as follows:

[

ET
(0)ij∂+Xj − E(0)ij∂−Xj

]

σ=0
= 0 (B.30)

and

[

ET
(π)ij∂+Xj − E(π)ij∂−Xj

]

σ=π
= 0 (B.31)

where we have defined

E(0)ij ≡ Gij − (Bij − 2πα′q0F
(0)
ij ) = Gij − B(0)ij = (ET )ij + F̂ij (B.32)

with

B(0)ij ≡ Bij − 2πα′q0F
(0)
ij = Bij − q0F̂

(0)
ij

F̂
(0)
ij ≡ 2πα′F (0)

ij (B.33)

and similarly for the (π) quantities.

The general solution of the bulk equation in (2.13) is given by:

Xi(σ, τ) =
1

2

[

GijE(0)jkF
k(τ + σ) + Gij(ET )(0)jkGk(τ − σ)

]

(B.34)

with F i(τ + σ) and Gi(τ − σ) arbitrary functions.

We have chosen the particular form in eq. (B.34) because it immediately solves the

boundary condition at σ = 0 as we will show shortly. By inserting eq. (B.34) in the two

boundary conditions one gets:

(ET
(0)G

−1E(0))ij∂τF
j(τ) = (E(0)G

−1ET
(0))ij∂τGj(τ) (B.35)

and

(ET
(π)G

−1E(0))ij∂τF
j(τ + π) = (E(π)G

−1ET
(0))ij∂τGj(τ − π). (B.36)

Let us remind here that Gij means the inverse of the matrix Gij , i.e. GikGkj = δi
j. In

the following we will denote Gij with G−1 only when the indices i and j are not explicitly
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written. We are also using this convention for all other matrices. The boundary condition

at σ = 0 is immediately solved by

Gi(τ) = F i(τ) + const (B.37)

since the open string metric G(0) satisfies the relation:

G(0) = ET
(0)G

−1E(0) = E(0)G
−1ET

(0).

In order to solve the boundary condition at σ = π it is convenient to introduce the quantity:

Ri
j =

(

(ET
(π)G

−1E(0))
−1

)ik (

E(π)G
−1ET

(0)

)

kj
=

(

E−1
(0)GE−T

(π) E(π)G
−1ET

(0)

)i

j
(B.38)

which is a SO(d̂) matrix with respect to the metric G(0)

RTG(0)R = G(0).

The boundary condition at σ = π can now be written as follows:

∂τF
i(τ + π) = Ri

j∂τF j(τ − π). (B.39)

In order to solve the previous equation one should diagonalize the R-matrix. However, in

the dipole case, one can avoid such a problem because:

q0F
(0) − qπF (π) = 0 ⇒ R = I.

In this case all the (0) quantities drop and one can simply write E for E(0) and so on. The

solution of eq. (B.39) is:

∂τF i(τ + σ) =
√

2α′
∞

∑

n=−∞

(

e−i(τ+σ)nI

)i

j
αj

n (B.40)

that can be integrated to give:

F i(τ + σ) = xi + i
√

2α′
∞
∑

n=−∞

(

1

n
e−i(τ+σ)nI

)i

j

αj
n (B.41)

where xi is an arbitrary constant of integration. The open string expansion (excluding

pure Dirichlet boundary conditions)12:

Xi(σ, τ) =
1

2

(

X̂i
L(τ + σ) + X̂i

R(τ − σ)
)

(B.42)

where X̂i
L(τ + σ) and X̂i

R(τ − σ) are the ones already written respectively in (2.16)

and (2.17). It is also useful to define the commuting coordinates xi
0

xi = xi
0 − πα′ΘijGjkp

k (B.43)

12With respect to the conventions used in [27] (CRS) and in [28] (C) we have G = gCSR = gC ,B =

−FCRS = 2πα′
BC ,G = MCRS = GC , 2πα′Θ = ΘCSR = ΘC .
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where x0 satisfies the usual commutation relations

[xi
0, x

j
0] = 0 ; [xi

0, p
j ] = iGij (B.44)

Given the operator x0, we define:

X̂i
L(τ + σ) = X̂i

L(0)(τ + σ) + πα′(G−1EΘG)ijp
j

= (G−1E)ij

(

Xj
L(0)(τ + σ) + πα′(ΘG)jl p

l
)

= (G−1E)ij
(

XL(0)(τ + σ) + πα′G−1Bp
)j

(B.45)

and

X̂i
R(τ − σ) = X̂i

R(0)(τ − σ) + πα′(G−1ET ΘG)ijp
j

= (G−1ET )ij

(

Xj
R(0)(τ − σ) + πα′(ΘG)ijp

j
)

= (G−1ET )ij
(

XR(0)(τ − σ) + πα′G−1Bp
)j

(B.46)

where all the quantities with (0) depend on x0 instead of x. Here we have introduced

XL(0)(z) = x0 − 2α′ip ln z + i
√

2α′
∑

n 6=0

sgn(n)
√

|n|
anz−n 0 ≤ arg(z) ≤ π

XR(0)(z̄) = x0 − 2α′ip ln z̄ + i
√

2α′
∑

n 6=0

sgn(n)
√

|n|
anz̄−n − π ≤ arg(z̄) ≤ 0

where z = ei(τ+σ), Notice that for σ = 0 equations (B.42), (B.45) and (B.46) becomes

Xi(τ) =
1

2

(

X̂i
L(τ) + X̂i

R(τ)
)

= XL(0)(τ) − πα′(ΘG)ijp
j (B.47)

where we have used that XL(0)(x) = XR(0)(x).

The spectrum of pi is given by

Gijp
j |k〉 = ki|k〉 =

ni√
α′ − qπa(π)i + q0a(0)i|k〉

with ni ∈ Z and where a
(0,π)
i are the constant parts of the gauge fields A

(0,π)
i .

The OPEs read

XL(0)(z)XT
L(0)(w) = −2α′ ln(z − w)G−1

XL(0)(z)XT
R(0)(w̄) = −2α′ ln(z − w̄)G−1

XR(0)(z̄)XT
R(0)(w̄) = −2α′ ln(z̄ − w̄)G−1 (B.48)

or using EG−1ET = ETG−1E = G

X̂L(z)X̂T
L (w) = −2α′ ln(z − w)G−1

X̂L(z)X̂T
R (w̄) = −2α′ ln(z − w̄)G−1EG−1EG−1 = −2α′ ln(z − w̄)E−T EG−1

X̂R(z̄)X̂T
R(w̄) = −2α′ ln(z̄ − w̄)G−1 (B.49)
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C. Short review of closed string canonical linear transformations

A general T-duality transformation is a canonical transformation of the form
(

X′t
2πα′

P t

)

= Λ

(

X′
2πα′

P

)

(C.1)

with

Λ =

(

Â B̂
Ĉ D̂

)

∈ O(d̂, d̂, Z) (C.2)

where X =‖ Xi ‖ and P =‖ Pi ‖ with i = 1, . . . d̂ are column vectors. Here and in what

follows, the momentum p is understood with covariant indices, unless explicitly indicated.

To belong to the group O(d̂, d̂, Z) the matrix Λ must be a d̂× d̂ matrix with integer entries

satisfying the constraint

Λ

(

0 1d̂

1d̂ 0

)

ΛT =

(

0 1d̂.

1d̂ 0

)

≡ J (C.3)

This constraint simply follows from the canonical commutation relations:

[X ′(σ), P T (σ′)] = [P (σ),X ′T (σ′)] = i∂σδ(σ − σ′)1d̂

which imply
[(

X′
2πα′

P

)

(σ),

(

X ′T

2πα′ , P
T

)

(σ′)

]

=

(

0 1d̂

1d̂ 0

)

i

2πα′ ∂σδ(σ − σ′). (C.4)

Under the transformation in eq. (C.1) the previous commutator becomes
[(

X′t
2πα′

P t

)

(σ),

(

(X ′t)T

2πα′ , P tT
)

(σ′)

]

= Λ

(

0 1d̂

1d̂ 0

)

ΛT i

2πα′ ∂σδ(σ − σ′) (C.5)

However the commutation relation in (C.4) has to be invariant under the transformation

in eq. (C.1) and thus equating the left hand sides of eqs. (C.4) and (C.5) one gets eq. (C.3)

implying Λ ∈ O(d̂, d̂, R). In order to derive the constraint Λ ∈ O(d̂, d̂, Z) for the T-duality

group we have to work a little more and we first define:

∂ ≡ ∂

∂(σ + τ)
∂̄ ≡ ∂

∂(τ − σ)

and then we get:

X ′ = ∂XL(τ + σ) − ∂̄X̃R(τ − σ) 2πα′P = E∂XL + ET ∂̄X̃R

with Eij = Gij + Bij , being XL and X̃R defined in eqs. (B.10) and (B.11). eqs. (C.1) can

be split into an holomorphic and an antiholomorphic part as
(

∂Xt
L

Et∂Xt
L

)

= Λ

(

∂XL

E∂XL

) (

−∂̄X̃t
R

EtT ∂̄X̃t
R

)

= Λ

(

−∂̄X̃R

ET ∂̄X̃R

)

(C.6)
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Looking first at the zero modes we get the following equations for the left and right momenta










(pt
L)i =

(

Â + B̂E
)i

j
pj

L

(Etpt
L)i =

(

Ĉ + D̂E
)

ij
pj

L











(pt
R)i =

(

Â − B̂ET
)i

j
pj

R

(EtT pt
R)i =

(

−Ĉ + D̂ET
)

ij
pj

R

(C.7)

and, if we remember that windings and momenta in compact space are defined as

m =
√

α′G−1(pL − pR) n =
√

α′(EG−1pL + ET G−1pR) (C.8)

where m =‖ mi ‖ and n =‖ ni ‖ and the momenta are understood with covariant indeces,

we easily get that under the transformation in eq. (C.7) m and n transform as

{

mt = Âm + B̂n

nt = Ĉm + D̂n
↔

(

mt

nt

)

= Λ

(

m

n

)

(C.9)

which implies the desired constraint, i.e. Λ ∈ O(d̂, d̂, Z).

If we now consider the other terms we get the following equations for the left and right

oscillators






αt
n =

(

Â + B̂E
)

αn

α̃t
n =

(

Â − B̂ET
)

α̃n

n ∈ Z∗ (C.10)

For the sake of completeness we collect here some consequences of eq. (C.3). We find the

expression for the inverse transformation matrices Λ−1 and Λ−T to be

Λ−1 =

(

0 1d̂

1d̂ 0

)

ΛT

(

0 1d̂

1d̂ 0

)

=

(

D̂T B̂T

ĈT ÂT

)

(C.11)

Λ−T =

(

0 1d̂

1d̂ 0

)

Λ

(

0 1d̂

1d̂ 0

)

=

(

D̂ Ĉ
B̂ Â

)

(C.12)

so that eq. (C.3) can be explicitly written as

ΛJ ΛT =

(

B̂ÂT + ÂB̂T B̂ĈT + ÂD̂T

D̂ÂT + ĈB̂T D̂ĈT + ĈD̂T

)

=

(

0 1d̂

1d̂ 0

)

(C.13)

ΛT J Λ =

(

ÂT Ĉ + ĈT Â ÂT D̂ + ĈT B̂
B̂T Ĉ + D̂T Â B̂T D̂ + D̂T B̂

)

=

(

0 1d̂

1d̂ 0

)

(C.14)

where in the second equality we have used the following identity:

ΛJ ΛT = J ⇒ ΛJ ΛT J = I ⇒ ΛJ ΛT J Λ = Λ ⇒ ΛT J Λ = J

The inverses of eqs. (C.9) and (C.10) can then be obtained using eq. (C.11), i.e Â ↔
D̂T , B̂ → B̂T , Ĉ → ĈT and exchanging t quantities with those without t, explicitly

{

m = D̂T mt + B̂T nt

n = ĈT mt + ÂT nt
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





αn =
(

D̂T + B̂TEt
)

αt
n

α̃n =
(

D̂T − B̂T EtT
)

α̃t
n

n ∈ Z∗ (C.15)

From the two eqs. (C.6) we get two different expressions for the relation between Et and

E

EtT = (−Ĉ + D̂ET )(Â − B̂ET )−1 Et = (Ĉ + D̂E)(Â + B̂E)−1 (C.16)

which are compatible because of eqs. (C.14).

Finally we give the transformation properties of the background metric

Gt = (Â + B̂E)−T G(Â + B̂E)−1 = (Â − B̂ET )−T G(Â − B̂ET )−1 (C.17)

which can be easily shown by writing Gt = Et + EtT and using respectively the second eq.

in (C.16) with its transposed and the first Equation in (C.16) with its transposed.

Finally it is useful to establish the connection between our notation and the one used

in [38]. To this purpose we must consider the closed string Hamiltonian given in eq. (B.16).

By requiring the Hamiltonian to be invariant under the O(d̂, d̂, Z) transformation

Ht

2
=

1

2
(Zt)T M tZt + · · · =

1

2
(ΛZ)T Λ−T MΛ−1(ΛZ) + · · · ≡ H

2

one gets M t = Λ−T MΛ−1. By comparing such transformation with eq. (2.4.19) of ref. [38]

we get that g = Λ−T . By using the expressions of g as given in ref. [38] and Λ as defined

in eq. (C.3), we get:

g =

(

a b

c d

)

=

(

D̂ Ĉ
B̂ Â

)

where we have used the identity Λ−T = JΛJ , which trivially follows from eq. (C.3). In the

last part of this appendix we give some relations useful to determine the normalization of

the boundary state given in eq. (4.4). To this aim we notice that:

(det Et)2

detGt
=

(

det(−Ĉ + D̂ET )

det(Â − B̂ET )

)2
det(Â − B̂ET )T det(Â − B̂ET )

det G

=

{

(det(−Ĉ + D̂ET ))2 1
det G det D̂ = 0

(det D̂)2(det E)2 1
det G det D̂ 6= 0

(C.18)

where we have used the first equation in (C.16) and the second in (C.17) together with the

equality

det D̂−1 det(−Ĉ + D̂ET ) = det(F + ET ) = det E
which follows from eqs. (4.3) (B.32). In this way we have determined the zero mode part

of the boundary state. Moving to the non-zero modes we notice that

αtT
−nEtT Et−1Gtα̃t

−n = αT
−n(Ĉ + D̂E)T (−Ĉ + D̂ET )−T Gαt

−n

⇒ αT
−nEE−T Gα̃−n det D̂ 6= 0 (C.19)

where we have used eqs. (C.10) and (C.16) together with the following identity:

(Ĉ + D̂E)T (−Ĉ + D̂ET )−T = (D̂−1Ĉ + E)T (−D̂−1Ĉ + ET )−T = EE−T .
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D. Boundary state: closed string calculation

In this appendix we determine directly in the closed string channel, the compact part of the

boundary state describing a non-abelian brane compactified on T 2 and in the presence of a

background gauge field with constant field strength. The generalization of such calculation

to a generic torus T 6 will be trivial. In order to simplify the calculation, we take the

background gauge field in the gauge:

A1 = 0 A2 = F12x
1

which is different from the gauge choice made in the section 2. Here, the xi are the compact

coordinates bounded between 0, 2π
√

α′, i.e. 0 ≤ xi < 2π
√

α′, with i = 1, 2.

The boundary state in the presence of a magnetic field is related to the uncharged one

by the relation [33]:

|D25(E,F )〉 = Tr
(

P e+i
H

qA
)

|D25(E,F = 0)〉 (D.1)

Denoting by γ the closed path of the integration, we parameterized it as follows:

γ : σ ∈ [0, π] −→ (X1(σ), X2(σ))

The path, in general, will wrap wi times the torus and the details of such a wrapping are

important in the evaluation of the path-ordering appearing in the eq. (D.1). This is because

every time that the curve makes a turn around the cycles of the torus, the gauge transition

functions must be introduced “to glue” the fields at the boundaries of the torus. Such a

gluing can be realized as follows. We first choose the origin of the compact frame coincident

with the first end of the curve and label with λi, (λ0 = 0 and λM+1 = π) the values which

the parameter σ takes when the path cross the boundary values xi = 0, 2π
√

α′, i = 1, 2.

We can write then:

Xi(σ) = xi(σ) + 2π
√

α′
p

∑

k=1

si
k ; σ ∈ [λp, λp+1]

Here 0 ≤ xi(σ) < 2π
√

α′ and si
p = −1, 1 respectively if the path in the corresponding

interval [λp−1, λp] “unwraps” or wraps once, while is zero if the curve is constant in the

interval. The total wrapping will be given by:

wi =
M
∑

k=1

si
k

Now, we are ready to explicitly compute the path-ordering introduced in eq. (D.1) in the

case of non-abelian branes. It is given by:

Tr
(

P ei
H

qA
)

=Tr

[

e
i

R λ1
λ0

q F12x1x′2dτ
Ω

s2
1

2 Ω
s1
1

1 . . . e
i

R λp+1
λp

q F12x1x′2dτ
Ω

s2
p+1

2 Ω
s1
p+1

1 . . .

]
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being, in this gauge, the U(1) factor of the gauge transition function slightly different from

the one given in section 2:

Ω1 = e−2πi
√

α′q F12x2
ω1 Ω2 = ω2

By using the previous parametrization of the curve γ, we can write:

e
i

R λp+1
λp

q F12x1x′2dσ
Ω

s2
p+1

2 Ω
s1
p+1

1 = e
i

R λp+1
λp

q F12X1X′2dσ−2πi
√

α′ Pp
k=1 q F12s1

k(X2(λp+1)−X2(λp))

×e−2πi
√

α′s1
p+1q F12(X2(λp+1)−2π

√
α′ Pp+1

k=1 s2
k)ω

s2
p+1

2 ω
s1
p+1

1

which implies:

P ei
H

qA = e
i

R λM+1
λ0

q F12X1X′2dσ−2πi
√

α′ PM
p=1

Pp
k=1 q F12s1

k(X2(λp+1)−X2(λp))

×e−2πi
√

α′ PM−1
p=0 s1

p+1q F12(X2(λp+1)−2π
√

α′ Pp+1
k=1 s2

k
)

×ω
s2
1

2 ω
s1
1

1 ω
s2
2

2 ω
s1
2

1 . . . ω
s2
M

2 ω
s1
M

1 (D.2)

The reordering of the last factor gives:

ω
s2
1

2 ω
s1
1

1 ω
s2
2

2 ω
s1
2

1 . . . ω
s2
M

2 ω
s1
M

1 = e−(2π
√

α′)2iF12
PM

p=1 s1
p

Pp
k=1 s2

kωw1

1 ωw2

2

which cancels the last factor in the second line of the eq. (D.2), while observing that:

M
∑

p=1

[

p
∑

k=1

s1
k(X

2(λp+1) − X2(λp)) + s1
pX

2(λp)

]

= w1 X2(π)

we can write:

Tr
(

P ei
H

qA
)

= ei
R π
0 q F12X1X′2dσe−2πi

√
α′F12w1 X2(π)Tr

[

ωw1

1 ωw2

2

]

In particular the path ordering must be evaluated on the string coordinate expansion with

the result

P ei
H

qA = ei2πq[Fijxim̂j−πFijm̂im̂j]e−πα′qFij

P∞
n=1(a

i
n−ãi

−n)(aj
−n−ãj

n)ωm̂1

1 ωm̂2

2

where now all m̂i are winding operators.

Let us now determine the non-zero modes contribution of the boundary state, starting

from the expression given in eq. (B.28). The latter corresponds to evaluate the following

product of operators:

e−πα′qFij(a
i−ãi†)(aj†−ãj)e− ai†Gih(E−1)hk(ET )kj ãj† |0 >

which, since (ai−ãi†) and (aj†−ãj) commute, can be easily evaluated with the introduction

of an auxiliary variable z:

e−πα′qFij(a
i−ãi†)(aj†−ãj) =

∫

∏

i

dzi dz̄i

π
e−ziz̄

i+πα′qFij(a
i−ãi†)z̄j−(ai†−ãi)zi

– 48 –



J
H
E
P
1
1
(
2
0
0
7
)
1
0
0

The previous integral can be performed and one gets:
∫

∏

i

dzi dz̄i

π
e−ziz̄

i+πα′qFij(a
i−ãi†)z̄j−(ai†−ãi)zi e− ai†Gih(E−1)hk(ET )kj ãj† |0 >

=

∫

∏

i

dzi dz̄i

π
e−ziz̄

i

eπα′qFijaiz̄j

e−πα′qFij ãi† z̄j

e−ai†zieãizi e− ai†Gih(E−1)hk(ET )kj ãj† |0 >

=

∫

∏

i

dzi dz̄i

π
e−ziz̄i

eπα′q(G−1)inFnlz̄
l[−Gih(E−1)hk(ET )kj ãj†−(Gih(E−1)hk(ET )kj(G

−1)mj+δj
i )zj]

e−ai†Gih(E−1)hk(ET )kj ãj†−ai†(Gih(E−1)hk(ET )km(G−1)mj+δj
i )zj−πα′qFij z̄j ãi† |0 >

=

∫

∏

i

dzi dz̄i

π
e−ziz̄i

eπα′q(G−1)inFnlz̄
l[−Gih(E−1)hk(ET )kj ãj†−2Gih(E−1)hjzj]

e−ai†Gih(E−1)hk(ET )kj ãj†−2ai†Gih(E−1)hjzj−πα′qFij z̄j ãi† |0 >

=

∫

∏

i

dzi dz̄i

π
e−zi[δi

j−2πα′qFjh(E−1)hi]z̄j

e2πα′qz̄jFjh(E−1)hkGkiã
i†
e−2ai†Gih(E−1)hjzj

e−ai†Gih(E−1)hk(ET )kj ãj† |0 >

=
[

det(δi
j − 2πα′q(FE−1)ji

]−1
e−2 ai†Gih(E−T )hk(F̂ )kl(E

−1)lmGmj ãj†

e− ai†Gih(E−1)hk(ET )kj ãj† |0 >

=
[

det(ET E−1)ji

]−1
e− ai†Gih(E−T )hk(E)kj ãj† |0 >

Then, by using the zeta function regularization
∑∞

1 1 = ζ(0) = −1
2 , we can get the

complete contribution from non zero-mode
[

Tr
(

P ei
H

qA
)

|D25(E,F = 0)〉
]

nzm
=

√

det(ET E−1)e−
P∞

n=1 ai†
n (GE−T E)ij ãj†n |0 >

We can now examine the zero modes contribution and we find
[

Tr
(

P ei
H

qA
)

|D25(E,F = 0)〉
]

zm
=

=

√
detE

(det G)1/4

∑

s

Tr(ωs1
1 ωs2

2 ) e−iπF̂12s1s2|ni = F̂ijs
j,mi = si〉

The previous calculation can also be generalized to a generic torus, getting:
[

Tr
(

P ei
H

qA
)

|D25(E,F = 0)〉
]

zm
=

=

√
detE

(det G)1/4

∑

s

Tr(ωs1
1 ωs2

2 . . . ω
s
d̂

d̂
) e−iπF̂ <

ij sisj |ni = F̂ijs
j,mi = si〉

where F̂<
ij = F̂ij if i < j, zero otherwise. The factor Tr(ωs1

1 . . . ω
s
d̂

d̂
) acts as a projector on

the possible values of the integers s. This projector depends explicitly on the form of the

various ω but we can nevertheless deduce the important constraints

ni = F̂ijs
j ∈ Z
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which are valid for all the values of s which survive the projection. The proof is very easy

and for n1 goes as

Tr(ωs1
1 . . . ω

s
d̂

d̂
) = Tr(ω1ω

s1
1 . . . ω

s
d̂

d̂
ω−1

1 )

= ei2πF̂1jsj

Tr(ωs1
1 . . . ω

s
d̂

d̂
)

The final form of the boundary reads

|D25(E,F )〉 =
T25

2
N

√
det E

(det G)1/4

∑

s

Tr(ωs1
1 ωs2

2 . . . ω
s
d̂

d̂
)

N
e−iπF̂ <

ij sisj |ni = F̂ijs
j,mi = si〉

×e− ai†Gih(E−T )hk(E)kj ãj† |0 > (D.3)

with:

Tr(ωs1
1 ωs2

2 . . . ω
s
d̂

d̂
) = N δ

[N ]
s1,0 . . . δ

[N ]
s
d̂
,0
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type-I strings on tori with magnetic background flux, JHEP 10 (2000) 006 [hep-th/0007024].

[14] M. Bianchi and E. Trevigne, The open story of the magnetic fluxes, JHEP 08 (2005) 034

[hep-th/0502147].

[15] I. Antoniadis, A. Kumar and T. Maillard, Magnetic fluxes and moduli stabilization, Nucl.

Phys. B 767 (2007) 139 [hep-th/0610246].

[16] I. Antoniadis, A. Kumar and B. Panda, Supersymmetric SU(5) GUT with stabilized moduli,

arXiv:0709.2799.

[17] I. Pesando, Boundary states for branes with non trivial homology in constant closed and open

background, hep-th/0505052.

[18] P. Di Vecchia, A. Liccardo, R. Marotta, F. Pezzella and I. Pesando, Boundary state for

magnetized d9 branes and one-loop calculation, hep-th/0601067.
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